Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, xét tứ giác ADMN có
góc A =góc D = 90 độ ( DH nhận biết hcn )
góc N = 90 độ ( gt )
=>Tứ giác ADMN là hcn ( tứ giác có 3 góc vuông)
b, Xét tam giác CHD có:
CI=IH ( gt ) ; CM=MD ( gt )
=>MI là đường TB của tam giác CDH => MI // DH ( tc đg tb )
Mà DH vuông góc vs AC => MI vuông góc vuông
c, tự làm nhé
a: Xét tứ giác ANKM có
\(\widehat{ANK}=\widehat{AMK}=\widehat{MAN}=90^0\)
Do đó: ANKM là hình chữ nhật
\(a,\widehat{AHD}=\widehat{AED}=\widehat{HAE}=90^0\\ \Rightarrow AHDE\text{ là hcn}\\ b,\text{Vì }D\text{ là trung điểm }BC;DE\text{//}AB\left(\perp AC\right)\\ \Rightarrow E\text{ là trung điểm }AC\\ \text{Mà }E\text{ là trung điểm }DM\\ \Rightarrow ADCM\text{ là hbh}\)
a, xét tứ giác ADMN có : ^NAD = ^ADM = ^ANM = 90
=> ADMN là hình chữ nhật
b, có M là trung điểm của DC (gt)
I là trung điểm của CH (gt)
=> MI là đường trung bình của tam giác DHC (đn)
=> MI // DH (tc)
DH _|_ AC (gt)
=> MI _|_ AC
c, gọi AM cắt DM tại O
ANMD là hình chữ nhật (câu a)
=> AM = DN (tc) (1) và O là trung điểm của AM (tc)
xét tam giác AIM vuông tại I
=> IO = AM/2 và (1)
=> IO = DN/2
=> tam giác DNI vuông tại I (đl)