Tìm các cặp số x,y nguyên thỏa mãn 9x^2-8y^2=15
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Leftrightarrow x^2+4y^2+4xy-2\left(x+2y\right)+1=5-4y^2\)
\(\Leftrightarrow\left(x+2y+1\right)^2=5-4y^2\)
TH1 : \(4y^2=0\)
Pt \(\Leftrightarrow\left(x+2y+1\right)^2=5\)Mà 5 không là số chính phương.
=> Không có số nguyên x nào thỏa mãn.
TH2 : \(4y^2>0\)
Do \(\left(x+2y+1\right)^2\ge0\Rightarrow5\ge4y^2\)
Mà y nguyên
=> \(4y^{2}=4\)
=> y ∈ {1 ; -1}
Với y = 1
=> x + 3 = 1
=> x = -2 (tm)Với y = -1
=> x - 1 = 1
=> x = 2 (tm)Vậy..
từ trường hợp y=1 của bạn có thể giải thành 2 trường hợp của x
Thay y=1 vào \(\left(x+2y-1\right)^2=5-4y^2\)được
\(\left(x+2-1\right)^2=5-4\Leftrightarrow\left(x-1\right)^2=1\Leftrightarrow\left(x-1\right)^2-1=0\Leftrightarrow x\left(x-2\right)=0\)\(\Rightarrow\left[{}\begin{matrix}x=0\\x=-2\end{matrix}\right.\)
*Trường hợp y=-1
\(\left(x-2-1\right)^2=5-4\Leftrightarrow\left(x-3\right)^2=1\Leftrightarrow\left(x-3\right)^2-1=0\Leftrightarrow\left(x-2\right)\left(x-4\right)=0\)\(\Rightarrow\left[{}\begin{matrix}x=2\\x=4\end{matrix}\right.\)
\(y\left(x+3\right)-5x-15=2\\ \Rightarrow y\left(x+3\right)-\left(5x+15\right)=2\\ \Rightarrow y\left(x+3\right)-5\left(x+3\right)=2\\ \Rightarrow\left(y-5\right)\left(x+3\right)=2\)
Vì \(x,y\in Z\Rightarrow\left\{{}\begin{matrix}y-5,x+3\in Z\\y-5,x+3\inƯ\left(2\right)\end{matrix}\right.\)
Ta có bảng:
x+3 | 1 | 2 | -1 | -2 |
y-5 | 2 | 1 | -2 | -1 |
x | -2 | -1 | -4 | -5 |
y | 7 | 6 | 3 | 4 |
Vậy \(\left(x,y\right)\in\left\{\left(-2;7\right);\left(-1;6\right);\left(-4;3\right);\left(-5;4\right)\right\}\)
=>y.(x+3)-5(x+3)=2
=>(y-5).(x+3)=2
x+3 | 1 | -1 | 2 | -2 |
y-5 | 1 | -1 | 2 | -2 |
x | -2 | -1 | -4 | -5 |
y | 7 | 6 | 3 | 4 |
Ta có: \(9x^2-8y^2=15⋮3\)
=> \(8y^2⋮3\)=> \(y^2⋮3\)=> \(y⋮3\)
Đặt y = 3 t ( t là số nguyên )
ta có: \(9x^2-8.9t^2=15\)
=> \(15=9x^2-8.9t^2⋮9\) vô lí
Vậy không tồn tại cặp số nguyên x; y.