K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 12 2021

Ta có \(y^2=3-2\left|2x+3\right|\ge0\Leftrightarrow0\le\left|2x+3\right|\le\dfrac{3}{2}\)

Mà \(x,y\in Z\Leftrightarrow\left|2x+3\right|\in\left\{0;1\right\}\)

Với \(\left|2x+3\right|=0\Leftrightarrow x=-\dfrac{3}{2}\left(loại\right)\)

Với \(\left|2x+3\right|=1\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=-2\end{matrix}\right.\Leftrightarrow y^2=1\Leftrightarrow\left[{}\begin{matrix}y=1\\y=-1\end{matrix}\right.\)

Vậy PT có nghiệm \(\left(x;y\right)\) là \(\left(-1;1\right);\left(-1;-1\right);\left(-2;1\right);\left(-2;-1\right)\)

21 tháng 3 2018

x^2y là sao bạn hình như sai ở chỗ đó

21 tháng 3 2018

đó là (x^2)*y nha

11 tháng 10 2019

<=> (x-2)(x+y-2)=3

=>\(\hept{\begin{cases}x-2=1\\x+y-2=3\end{cases};\hept{\begin{cases}x-2=-1\\x+y-2=-3\end{cases};\hept{\begin{cases}x-2=3\\x+y-2=1\end{cases};\hept{\begin{cases}x-2=-3\\x+y-2=-1\end{cases}}}}}\)

=> \(\hept{\begin{cases}x=3\\y=2\end{cases};\hept{\begin{cases}x=1\\y=-2\end{cases};\hept{\begin{cases}x=5\\y=-2\end{cases};\hept{\begin{cases}x=-1\\y=2\end{cases}}}}}\)

NV
18 tháng 2 2022

\(\Leftrightarrow\left(x^2-4xy+4y^2\right)+\left(y^2+2y+1\right)=4\)

\(\Leftrightarrow\left(x-2y\right)^2+\left(y+1\right)^2=4\)

\(\Rightarrow\left(y+1\right)^2\le4\Rightarrow\left[{}\begin{matrix}\left(y+1\right)^2=0\\\left(y+1\right)^2=4\end{matrix}\right.\)

\(\Rightarrow y=\left\{-1;-3;1\right\}\)

Thế vào pt ban đầu tìm x nguyên tương ứng

18 tháng 2 2022

\(x^2+5y^2+2y-4xy-3=0\left(1\right)\\ \Leftrightarrow\left(x^2-4xy+4y^2\right)+\left(y^2+2y+1\right)-4=0\\ \Leftrightarrow\left(x-2y\right)^2+\left(y+1\right)^2=4\)

Ta có: \(\left(x-2y\right)^2+\left(y+1\right)^2=4\ge\left(y+1\right)^2\)

Mà \(y\in Z\Rightarrow\left(y+1\right)^2\in Z\Rightarrow\left(y+1\right)^2\in\left\{0;1;4\right\}\)

Với \(\left(y+1\right)^2=0\Rightarrow y+1=0\Rightarrow y=-1\)

Thay y=-1 vào pt (1) ta tìm được \(\left\{{}\begin{matrix}x=-4\\x=0\end{matrix}\right.\)

Với \(\left(y+1\right)^2=1\Rightarrow\left[{}\begin{matrix}y+1=1\\y+1=-1\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}y=0\\y=-2\end{matrix}\right.\)

Thay y=0 vào pt (1) ta không tìm được x nguyên 

Thay y=-2 vào pt (1) ta không tìm được x nguyên 

Với \(\left(y+1\right)^2=4\Rightarrow\left[{}\begin{matrix}y+1=-2\\y+1=2\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}y=-3\\y=1\end{matrix}\right.\)

Thay y=-3 vào pt (1) tìm được \(x=-6\)

Thay y=1 vào pt (1) tìm được \(x=2\)