K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔABC và ΔCDA có

\(\widehat{ACB}=\widehat{CAD}\)

AC chung

\(\widehat{CAB}=\widehat{ACD}\)

Do đó: ΔABC=ΔCDA

b: Xét tứ giác ABCD có 

AB//CD

AD//BC

Do đó: ABCD là hình bình hành

Suy ra: Hai đường chéo AC và BD cắt nhau tại trung điểm của mỗi đường

hay M là trung điểm của AC

c: Xét ΔAMI và ΔCMK có 

\(\widehat{IAM}=\widehat{KCM}\)

AM=CM

\(\widehat{AMI}=\widehat{CMK}\)

Do đó: ΔAMI=ΔCMK

Suy ra: MI=MK

mà M,I,K thẳng hàng

nên M là trung điểm của IK

1 tháng 9 2019

9 tháng 1 2019

A B C M D I K

a) Do AD // BC (gt) => góc DAC = góc ACB (so le trong)

        AB // CD (gt) => góc BAC = góc ACD (so le trong)

Xét t/giác ABC và t/giác CDA

có góc ACB = góc DAC (cmt)

 AC : chung

 góc BAC = góc ACD (cmt)

=> t/giác ABC = t/giác CDA (g.c.g)

b) Ta có : t/giác ABC = t/giác CDA (cmt)

=> AB = CD (hai cạnh tương ứng)

Do AB // CD (gt) => góc ABD = góc BDC (so le trong)

Xét t/giác AMB và t/giác CMD

có góc BAM = góc  MCD (cmt)

  AB = CD (cmt)

  góc ABM = góc BDM (cmt)

=> t/giác AMB = t/giác CMD (g.c.g)

=> AM = MC (hai cạnh tương ứng)

=> M là trung điểm của AC

c) Xét t/giác AMI và t/giác CMK

có góc DAC = góc ACK (cmt)

    AM = CM (cmt)

   góc IMA = góc CMK (đối đỉnh)

=> t/giác AMI = t/giác CMK (g.c.g)

=> MI = MK (hai cạnh tương ứng)

=> M là trung điểm của IK

30 tháng 11 2019

Kuroba Kaito, mình đã biết I, M, K có thẳng hàng đâu. mới chứng minh được MI=Mk nên chưa thể nói M là trung điểm của IK được

a: Xét ΔABC và ΔCDA có 

\(\widehat{BAC}=\widehat{DCA}\) 

AC chung

\(\widehat{ACB}=\widehat{CAD}\)

Do đó: ΔABC=ΔCDA

b: Xét ΔADB và ΔCBD có

BD chung

AD=CB

AB=CD

Do đó: ΔADB=ΔCBD

20 tháng 12 2021

a: Xét tứ giác ABCD có 

AD//BC

AB//CD

Do đó: ABCD là hình bình hành

Suy ra: AB=CD