K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 2 2021

(x-5) (x-7)=0

15 tháng 3 2020

Đây vẫn là Sử mà @Lê gia Linh

15 tháng 3 2020

Do mình ấn nhầm ạ

a) Tính AM

Áp dụng định lí pytago vào ΔABC vuông tại A, ta được

\(BC^2=AB^2+AC^2\)

hay \(BC^2=6^2+8^2=100\)

\(BC=\sqrt{100}=10cm\)

Ta có: AM là đường trung tuyến ứng với cạnh huyền BC của ΔABC vuông tại A(gt)

\(AM=\frac{BC}{2}\)(định lí 1 áp dụng hình chữ nhật vào tam giác vuông)

hay \(AM=\frac{10}{2}=5cm\)

Vậy: AM=5cm

b) Tứ giác ABCD là hình gì?

Xét tứ giác ABCD có

M là trung điểm của đường chéo BC(AM là đường trung tuyến ứng với cạnh BC của ΔABC)

M là trung điểm của đường chéo AD(A và D đối xứng nhau qua M)

Do đó: ABCD là hình bình hành(dấu hiệu nhận biết hình bình hành)

Hình bình hành ABCD có \(\widehat{CAB}=90^0\)(ΔABC vuông tại A)

nên ABCD là hình chữ nhật(dấu hiệu nhận biết hình chữ nhật)

c)

*Tính chu vi của hình chữ nhật ABDC

\(C_{ABDC}=\left(AB+AC\right)\cdot2=\left(6+8\right)\cdot2=28cm\)

*Tính diện tích của hình chữ nhật ABDC

\(S_{ABDC}=AB\cdot AC=6\cdot8=48cm^2\)

Vậy:

-Chu vi hình chữ nhật ABDC là 28cm

-Diện tích hình chữ nhật ABDC là 48cm2

d) Để hình chữ nhật ABDC là hình vuông thì AB=AC

Vậy: Khi ΔABC có thêm điều kiện AB=AC thì hình chữ nhật ABDC là hình vuông

a) Tính AM

Áp dụng định lí pytago vào ΔABC vuông tại A, ta được

\(BC^2=AB^2+AC^2\)

hay \(BC^2=6^2+8^2=100\)

\(BC=\sqrt{100}=10cm\)

Ta có: AM là đường trung tuyến ứng với cạnh huyền BC của ΔABC vuông tại A(gt)

\(AM=\frac{BC}{2}\)(định lí 1 áp dụng hình chữ nhật vào tam giác vuông)

hay \(AM=\frac{10}{2}=5cm\)

Vậy: AM=5cm

b) Tứ giác ABCD là hình gì?

Xét tứ giác ABCD có

M là trung điểm của đường chéo BC(AM là đường trung tuyến ứng với cạnh BC của ΔABC)

M là trung điểm của đường chéo AD(A và D đối xứng nhau qua M)

Do đó: ABCD là hình bình hành(dấu hiệu nhận biết hình bình hành)

Hình bình hành ABCD có \(\widehat{CAB}=90^0\)(ΔABC vuông tại A)

nên ABCD là hình chữ nhật(dấu hiệu nhận biết hình chữ nhật)

c)

*Tính chu vi của hình chữ nhật ABDC

\(C_{ABDC}=\left(AB+AC\right)\cdot2=\left(6+8\right)\cdot2=28cm\)

*Tính diện tích của hình chữ nhật ABDC

\(S_{ABDC}=AB\cdot AC=6\cdot8=48cm^2\)

Vậy:

-Chu vi hình chữ nhật ABDC là 28cm

-Diện tích hình chữ nhật ABDC là 48cm2

d) Để hình chữ nhật ABDC là hình vuông thì AB=AC

Vậy: Khi ΔABC có thêm điều kiện AB=AC thì hình chữ nhật ABDC là hình vuông

15 tháng 3 2020

Bạn sang bên Toán nha Lê gia Linh chứ đây là bộ môn Lịch sử mà ~~

15 tháng 3 2020

Bạn ơi, đây là Sử chứ không phải Toán