giải hệ phương trình \(\hept{\begin{cases}mx-y=1\\\frac{x}{2}+\frac{y}{3}=8\end{cases}}\)
a) giải hệ phương trình với m=1
b) tìm giá trị của m để hệ phương trình vô nhiệm
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. Thay m = 1 vào hệ ta dc: \(\hept{\begin{cases}x-y=1\\\frac{x}{2}+\frac{y}{3}=8\end{cases}}\) <=> \(\hept{\begin{cases}x-y=1\\3x+2y=48\end{cases}}\) <=> \(\hept{\begin{cases}3x-3y=3\\3x+2y=48\end{cases}}\)<=> \(\hept{\begin{cases}x-y=1\\-5y=-45\end{cases}}\)<=> \(\hept{\begin{cases}x=y+1=9+1=10\\y=9\end{cases}}\)
Vậy no cua hpt khi m = 1 là: (10;9)
b. Xét hệ: \(\hept{\begin{cases}mx-y=1\\3x+2y=48\end{cases}}\) <=> \(\hept{\begin{cases}2mx-2y=2\\3x+2y=48\end{cases}}\)<=> \(\hept{\begin{cases}\left(2m+3\right)x=50\left(1\right)\\3x+2y=48\end{cases}}\)
Hệ pt vô nghiệm <=> (1) vô nghiệm 2m + 3 = 0 <=> m = \(-\frac{3}{2}\)
Vậy khi m = -3/2 thì hệ pt vô nghiệm
Xét hệ phương trình :\(\hept{\begin{cases}mx-y=1\\\frac{x}{2}-\frac{y}{3}=334\end{cases}}\)
a, Khi m = 1 ta có hệ phương trình : \(\hept{\begin{cases}x-y=1\\3x-2y=2004\end{cases}\Leftrightarrow\hept{\begin{cases}x=2002\\y=2001\end{cases}}}\)
b, \(\hept{\begin{cases}mx-y=1\\\frac{x}{2}-\frac{y}{3}=334\end{cases}\Leftrightarrow\hept{\begin{cases}mx-y=1\\3x-2y=2004\end{cases}}}\)
Hệ phương trình vô nghiệm khi \(\frac{m}{3}=\frac{1}{2}\ne\frac{1}{2004}\Leftrightarrow m=\frac{3}{2}\)
1:
a)\(\hept{\begin{cases}nx+x=5
\\x+y=1\end{cases}}\Leftrightarrow\hept{\begin{cases}x.\left(n+1\right)=5\left(1\right)\\x+y=1\end{cases}}\)
\(\hept{\begin{cases}mx-y=5\\x+y=1\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}y=1-x\\mx-1+x=5\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}y=1-x\\\left(m+1\right)x=6\end{cases}}\)
Để hệ có nghiệm duy nhất thì
m + 1 ≠ 0 <=> m ≠ - 1
Để hệ vô nghiệm thì
m + 1 = 0 <=> m = - 1
\(D=m+1\) ; \(D_x=5+1=6\) ; \(D_y=m-5\)
Để hpt có nghiệm duy nhất thì \(D\ne0\Rightarrow m\ne-1\)
Để hpt vô nghiệm thì \(\hept{\begin{cases}D=0\\D_x\ne0\end{cases}}\) hoặc \(\hept{\begin{cases}D=0\\D_y\ne0\end{cases}}\)
Dễ thấy ngay \(D_x\ne0\) . Vậy m = -1 thì hệ vô nghiệm.
\(\hept{\begin{cases}x=\frac{m+1}{3}y-1\\-mx=y-1\end{cases}\Rightarrow\hept{\begin{cases}x-\frac{m+1}{3}y=-1\\mx+y=1\end{cases}}}\)
Để hpt có nghiệm => hpt có 1 nghiệm duy nhất hoặc có vô số nghiệm
* Để hpt có 1 nghiệm duy nhất
\(\Rightarrow\frac{1}{m}\ne\frac{m+1}{1}\Rightarrow m\ne m+1\left(tm\right)\)
Vậy với mọi m phương trình luôn có 1 nghiệm duy nhất
* Để hpt có vô số nghiệm
\(\Rightarrow\frac{1}{m}=\frac{m\left(m+1\right)}{1}=-\frac{1}{1}\)
\(\frac{1}{m}=-1\Rightarrow m=-1\)\(\Rightarrow-\frac{1\left(-1+1\right)}{1}=-1\left(ktm\right)\)
Vậy không có giá trị nào để hpt vô số nghiệm
Vậy với mọi m pt luôn có nghiệm