Cho tam giác ABC. M, N tương ứng là trung điểm của các đoạn CA ; CB. I là
điểm bất kì trên đường thẳng MN (I \(\ne\) M ; I \(\ne\)N). Chứng minh rằng trong ba tam giác
IBC, ICA, IAB có một tam giác mà diện tích của nó bằng tổng các diện tích của hai
tam giác còn lại.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án là B
Các tam giác được tạo thành từ 6 đỉnh trên là: ΔAMP; ΔMNP; ΔMNB; ΔNCP; ΔABC
Ta có: M là trung điểm của BC
N là trung điểm của AC nên MN là đường trung bình của Δ ABC ⇒ MN = 1/2 AB
Ta có: P là trung điểm của AB nên MP là đường trung bình của △ ng bình của △ ABC ⇒ NP = 1/2 BC
Mà AB = BC = AC (gt) ⇒ MN = MP = NP. Vậy △ MNP đều
MNP có điểm đặc biệt là: 4xMPN = ABC
Còn phần vẽ hình thì bạn tự vẽ nha!
Chúc bạn học tốt!
a) và b) Chứng minh nhờ tính chất đường trung bình của tam giác
c) Để chứng minh MNQR là ngũ giác đều ta cần chứng minh hai điều : Hình đó có tất cả các cạnh bằng nhau và có tất cả các góc bằng nhau.