K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 1 2019

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Ta có: M là trung điểm của BC

N là trung điểm của AC nên MN là đường trung bình của Δ ABC ⇒ MN = 1/2 AB

Ta có: P là trung điểm của AB nên MP là đường trung bình của ng bình của ABC ⇒ NP = 1/2 BC

Mà AB = BC = AC (gt) ⇒ MN = MP = NP. Vậy  △  MNP đều

1 tháng 7 2017

a) và b) Chứng minh nhờ tính chất đường trung bình của tam giác

c) Để chứng minh MNQR là ngũ giác đều ta cần chứng minh hai điều : Hình đó có tất cả các cạnh bằng nhau và có tất cả các góc bằng nhau.

Đa giác. Đa giác đều

23 tháng 4 2020

120 nhe

6 tháng 7 2019

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Xét △ ABC và  △  BCD:

AB = BC (gt)

∠ B = ∠ C (gt)

BC = CD (gt)

Do đó:  △  ABC =  △  BCD (c.g.c)

⇒ AC = BD (1)

Xét  BCD và  CDE:

BC = CD (gt)

∠ C =  ∠ D (gt)

CD = DE (gt)

Do đó:  △  BCD =  △  CDE (c.g.c) ⇒ BD = CE (2)

Xét  △ CDE và  △  DEA:

CD = DE (gt)

∠ D =  ∠ E (gt)

DE = EA (gt)

Do đó:  △  CDE =  △  DEA (c.g.c) ⇒ CE = DA (3)

Xét  DEA và  EAB:

DE = EA (gt)

∠ E =  ∠ A (gt)

EA = AB (gt)

Do đó:  △  DEA =  △  EAB (c.g.c) ⇒ DA = EB (4)

Từ (1), (2), (3), (4) suy ra: AC = BD = CE = DA = EB

Trong  △  ABC ta có RM là đường trung bình

⇒ RM = 1/2 AC (tính chất đường trung bình của tam giác)

Mặt khác, ta có: Trong Δ BCD ta có MN là đường trung bình

⇒ MN = 1/2 BD (tính chất đường trung bình của tam giác)

Trong  △  CDE ta có NP là đường trung bình

⇒ NP = 1/2 CE (tính chất đường trung bình của tam giác)

Trong  △  DEA ta có PQ là đường trung bình

⇒ PQ = 1/2 DA (tính chất đường trung bình của tam giác)

Trong  △  EAB ta có QR là đường trung bình

⇒ QR = 1/2 EB (tính chất đường trung bình của tam giác)

Suy ra: MN = NP = PQ = QR = RM

Ta có:  ∠ A =  ∠ B =  ∠ C =  ∠ D =  ∠ E = ((5-2 ). 180 0 )/5 =  108 0

△  DPN cân tại D

∠ (DPN) =  ∠ (DNP) = ( 180 0 -  ∠ D )/2 = ( 180 0  -  108 0 )/2 =  36 0

△  CNM cân tại C

⇒  ∠ (CNM) =  ∠ (CMN) = ( 180 0 -  ∠ D )/2 = ( 180 0  -  108 0 )/2 =  36 0

∠ (ADN) +  ∠ (PNM) +  ∠ (CNM) =  180 0

⇒  ∠ (PNM) =  180 0  - ( ∠ (ADN) +  ∠ (CNM) )

            = 180 0  - ( 36 0  –  36 0 ) =  108 0

△  BMR cân tại B

⇒  ∠ (BMR) =  ∠ (BRM) = ( 180 0 -  ∠ B )/2 = ( 180 0  -  108 0 )/2 =  36 0

∠ (CMN) +  ∠ (BRM) +  ∠ (BMR) =  180 0

⇒  ∠ (NMR) =  180 0  - ( ∠ (CMN) +  ∠ (BMR) )

            =  180 0  - ( 36 0  –  36 0 ) =  108 0

△  ARQ cân tại A

⇒  ∠ (ARQ) =  ∠ (AQR) = ( 180 0 -  ∠ A )/2 = ( 180 0  -  108 0 )/2 =  36 0

∠ (BRM) +  ∠ (MRQ) +  ∠ (ARQ) =  180 0

⇒  ∠ (MRQ) =  180 0  - ( ∠ (BRM) +  ∠ (ARQ) )

            = 180 0  - ( 36 0  –  36 0 ) =  108 0

△  QEP cân tại E

⇒  ∠ (EQP) =  ∠ (EPQ) = ( 180 0 -  ∠ E )/2 = ( 180 0  -  108 0 )/2 =  36 0

∠ (AQR) + (RQP) + (EQP) =  180 0

⇒  ∠ (RQP) =  180 0  - ( ∠ (AQR) +  ∠ (EQP) )

            =  180 0  - ( 36 0  –  36 0 ) =  108 0

∠ (EQP) +  ∠ (QPN) +  ∠ (DPN) =  180 0

⇒  ∠ (QPN) =  180 0  - ( ∠ (EPQ) +  ∠ (DPN) )

            =  180 0  - ( 36 0  –  36 0 ) =  108 0

Suy ra :  ∠ (PNM) =  ∠ (NMR) =  ∠ (MRQ) =  ∠ (RQP) =  ∠ (QPN)

Vậy MNPQR là ngũ giác đều.

25 tháng 8 2018

câu a bài 2 nhá

a) Gọi D là trung điểm BI => góc IDM = 45 độ
DM // IC ( đường trung bình )
=> góc BIC = 135 độ
=> 180 -1/2( góc B + góc C ) =135 độ
=> góc B + góc C = 90 độ
=> góc A = 90 độ

1 tháng 8 2021

a) Vì O cách đều 3 cạnh của tam giác nên OD = OE = OF
Áp dụng định lý Pytago vào tam giác vuông OBF và tam giác vuông ODB ta có:
BF=√OB2−OF2BF=OB2−OF2
BD=√OB2−OD2BD=OB2−OD2
Mà OF = OD nên BF = BD.
Tương tự áp dụng định lý Pytago vào tam giác vuông OEC và tam giác vuông ODC suy ra CE = CD
∆BAM có AB = BM nên ∆BAM là tam giác cân tại B ⇒ˆBAM=ˆBMA⇒BAM^=BMA^
Xét ∆BAM có BF = BD, BA = BM nên theo định lý Ta – lét ta có :
BFBA=BDBM⇒DF//AM⇒BFBA=BDBM⇒DF//AM⇒ DFAM là hình thang
Hình thang DFAM có ˆFAM=ˆAMDFAM^=AMD^ nên DFAM là hình thang cân
⇒{MF=ADAF=MD⇒{MF=ADAF=MD
∆ANC có AC = CN nên ∆ANC cân tại C⇒ˆCAN=ˆCNA⇒CAN^=CNA^
Xét ∆ANC có CE = CD, CA = CN nên theo định lý Ta – lét ta có :
CECA=CDCN⇒DE//AN⇒CECA=CDCN⇒DE//AN⇒ DEAN là hình thang
Hình thang DEAN có ˆCAN=ˆCNACAN^=CNA^ nên DEAN là hình thang cân
⇒{NE=ADAE=ND⇒{NE=ADAE=ND
⇒MF=NE⇒MF=NE
b) Xét ∆OEA và ∆ODN ta có :
⎧⎪⎨⎪⎩OE=ODˆOEA=ˆODNEA=DN{OE=ODOEA^=ODN^EA=DN⇒ΔOEA=ΔODN(c−g−c)⇒ON=OA⇒ΔOEA=ΔODN(c−g−c)⇒ON=OA
Xét ∆OAF và ∆OMD ta có :
⎧⎪⎨⎪⎩AF=MDˆOFA=ˆODMOF=OD{AF=MDOFA^=ODM^OF=OD⇒ΔOAF=ΔODM(c−g−c)⇒OA=OM⇒ΔOAF=ΔODM(c−g−c)⇒OA=OM
⇒OM=ON⇒OM=ON hay ∆MON cân tại O.

31 tháng 8 2018

Em tham khảo bài 2 tại link dưới đây nhé.

Câu hỏi của Nguyễn Chí Thành - Toán lớp 8 - Học toán với OnlineMath