Cho ΔABC cân tại A, biết AB = 5cm, BC = 6cm. Gọi H là trung điểm của BC.
a) Chứng minh: ΔABH = ΔACH
b) Chứng minh: AH ⊥ BC
c) Tính AH
d) Kẻ HE ⊥ AB (E ∈ AB), HK ⊥ AC (K ∈ AC). Chứng minh: HE = HK
e) Chứng minh: EK // BC
Ai giúp mik vs !!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét tam giác ABH và tam giác ACH có
AB=AC (tam giác ABC cân tại A)
\(\widehat{ABH}=\widehat{ACH}\)(tam giác ABC cân tại A)
BH=HC(H là trung điểm BC)
=> Tam giác ABH = Tam giác ACH (cgc)
b) Vì tam giác ABC cân tại A (gt) và H là trung điểm BC(gt)
=> AH là đường trung tuyến đồng thời là đường cao của tam giác ABC
=> AH vuông góc với BC(đpcm)
a) Xét t/giác ABH và t/giác ACH
c: AB = AC (gt)
BH = CH (gt)
AH: chung
=> t/giác ABH = t/giác ACH (c.c.c)
b) Ta có: t/giác ABH = t/giác ACH (cmt)
=> \(\widehat{AHB}=\widehat{AHC}\)(2 góc t/ứng)
mà \(\widehat{AHB}+\widehat{AHC}=180^0\)(kề bù)
=> \(\widehat{AHB}=\widehat{AHC}=90^0\)
=> AH \(\perp\)BC
c) Ta có: BH = CH = 1/BC = 1/2.6 = 3 (cm)
Áp dụng định lí Pi - ta - go vào t/giác ABH vuông tại H, ta có:
AB2 = AH2 + BH2 => AH2 = 52 - 32 = 16
=> AH = 4 (cm)
d) Ta có: t/giác AHB = t/giác AHC (cmt)
=> \(\widehat{A_1}=\widehat{A_2}\) (2 góc t/ứng)
Xét t/giác AHE và t/giác AHK
có: \(\widehat{A_1}=\widehat{A_2}\)(cmt)
AH : chung
\(\widehat{AEH}=\widehat{AKH}=90^0\)(gt)
=> t/giác AHE = t/giác AHK (ch - gn)
=> HE = HK (2 cạnh t/ứng)
e) Ta có: t/giác AHE = t/giác AHK (cmt)
=> AE = AK (2 cạnh t/ứng)
=> t/giác AEK cân tại A
=> \(\widehat{AEK}=\widehat{AKE}=\frac{180^0-\widehat{A}}{2}\)(1)
T/giác ABC cân tại A
=> \(\widehat{B}=\widehat{C}=\frac{180^0-\widehat{A}}{2}\)(2)
Từ (1) và (2) => \(\widehat{AEK}=\widehat{B}\)
Mà 2 góc này ở vị trí đồng vị
=> EK // BC
a: Xét ΔAHB vuông tại H và ΔAHC vuông tại H có
AB=AC
AH chung
=>ΔAHB=ΔAHC
b: góc EAH=góc CAH=góc EHA
=>ΔEAH cân tại E
a: Xét ΔBHA vuông tại H có
\(BA^2=BH^2+HA^2\)
hay AH=3(cm)
b: Xét ΔABH vuông tại H và ΔCBH vuông tại H có
BA=BC
BH chung
Do đó: ΔABH=ΔCBH
c: Xét ΔBIH vuông tại I và ΔBKH vuông tại K có
BH chung
\(\widehat{IBH}=\widehat{KBH}\)
Do đó: ΔBIH=ΔBKH
Suy ra: HI=HK
d: Xét ΔBAC có BI/BA=BK/BC
Do đó: IK//AC
a,xét tam giác ABH và tam giác ACH co
BH=HC(gt)
AH CHUNG
A1=A2=>TAM GIAC ABH=TM GIAC ACH
C,
bài này khá dễ, hình em tự vẽ nhé
a. Xét 2 tg ABK và ACK có:
AK chung
góc AKB = góc AKC ( đều = 900)
BK=CK ( vì AK là trung tuyến)
=> ABK = ACK ( 2 cạnh góc vuông)
Ta có: trong tam giác ABC cân, AK vừa là đường trung tuyến vừa là đg phân giác
=> góc BAH = góc CAH
Xét tg ABH và ACH
AH chung
góc BAH = CAH
BC = AC ( vì tg ABC chung)
=> tg ABH = ACH ( c.g.c)
b. theo a, ta có: tg ABH = tg ACH (cgc)
=> góc ABH = góc ACH
Mà theo gt góc ABC = góc ACB => HBC = HCB
=> tg BHC cân tại H