Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABH và ΔACH có
AB=AC
AH chung
HB=HC
Do đó: ΔABH=ΔACH
a: Xét ΔABH và ΔACH có
AB=AC
AH chung
HB=HC
Do đó: ΔAHB=ΔAHC
a: Xét ΔABH và ΔACH có
AB=AC
AH chung
HB=HC
Do đó: ΔABH=ΔACH
a: Xét ΔABH và ΔACH có
AB=AC
AH chung
HB=HC
Do đó: ΔAHB=ΔAHC
a) Vì H là trung điểm của BC(giả thiết)
\(\Rightarrow\)HB=HC
Xét tam giác ABH và tam giác ACH
AB=AC(giả thiết)
HB=HC(theo trên)
AH là cạnh chung
Dó đó: tam giác ABH= tam giác ACH(cạnh-cạnh-cạnh)(ĐPCM)
Mình rất xin lỗi khi chỉ giúp bạn được phần a)
a. vì tam giác ABC cân tại A
=> AB = AC
=> góc ABC = góc ACB
BM và CN là 2 đường trung tuyến của tam giác ABC
=> N và M lần lượt là trung điểm của AB và AC
=> AN = BN
AM = CM
mà AB = AC
=> AN = BN = AM = CM
Xét tam giác BNC và tam giác CMB:
BC chung
góc ABC = góc ACB (cmt)
BN = CM (cmt)
=> tam giác BNC = tam giác CMB (c-g-c) (đpcm)
b. tam giác BNC = tam giác CMB (cmt)
=> BM = CN ( 2 cạnh tương ứng)
mà BM giao CN tại K
=> K là trọng tâm của tam giác ABC
=> BK = CK
Xét Δ AKB và Δ AKC:
AK chung
AB = AC (cmt)
BK = CK (cmt)
=> Δ AKB = Δ AKC (c-c-c)
=> góc BAK = góc CAK (2 góc tương ứng)
=> AK là tia phân giác góc BAC
=> AK là đường trung trực của Δ ABC
=> AK ⊥ BC (đpcm)
c. Vì AK (AH) ⊥ BC
=> tam giác ABH vuông tại H
mà AH là đường trung trực của tam giác ABC
=> BH = CH = \(\dfrac{BC}{2}=\dfrac{6}{2}=3cm\)
Áp dùng định lí Py - ta - go vào tam giác ABH:
AB2 = BH2 + AH2
52 = 32 + AH2
AH2 = 52 - 32 = 25 - 9 = 16
=> AK = 4cm (AH > 0)
a: Xét ΔAHB vuông tại H và ΔAHC vuông tại H có
AB=AC
AH chung
=>ΔAHB=ΔAHC
b: góc EAH=góc CAH=góc EHA
=>ΔEAH cân tại E
bài này khá dễ, hình em tự vẽ nhé
a. Xét 2 tg ABK và ACK có:
AK chung
góc AKB = góc AKC ( đều = 900)
BK=CK ( vì AK là trung tuyến)
=> ABK = ACK ( 2 cạnh góc vuông)
Ta có: trong tam giác ABC cân, AK vừa là đường trung tuyến vừa là đg phân giác
=> góc BAH = góc CAH
Xét tg ABH và ACH
AH chung
góc BAH = CAH
BC = AC ( vì tg ABC chung)
=> tg ABH = ACH ( c.g.c)
b. theo a, ta có: tg ABH = tg ACH (cgc)
=> góc ABH = góc ACH
Mà theo gt góc ABC = góc ACB => HBC = HCB
=> tg BHC cân tại H