K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 8 2016

1. 

O A B D C E

+) Tứ giác ABCD kà hình thang cân => góc ADC = BCD và AD = BC

=> tam giác ODC cân tại O => OD = OC  

 mà AD = BC => OA = OB

+) tam giác ODB và OCA có: OD = OC; góc DOC chung ; OB = OA 

=> Tam giác ODB = OCA (c - g - c)

=> góc ODB = OCA mà góc ODC = OCD => góc ODC - ODB = OCD - OCA

=> góc EDC = ECD => tam giác EDC cân tại E => ED = EC (2)

Từ (1)(2) => OE là đường  trung trực của CD

=> OE vuông góc CD mà CD // AB => OE vuông góc với AB

Tam giác OAB cân tại O có OE là đường cao nên đồng thời là đường  trung trực

vậy OE là đường trung trực của AB

 

16 tháng 11 2018

Ta có MA = MD, NC = NB (gt) và AD // BC.

⇒ SAMND = SMCDN (các hình thang có các đáy bằng nhau và chung đường cao)

Do EF // AD nên đường cao từ E và F xuống AD bằng nhau, lại có AM = DM

⇒ SAEM = SDFM

Tương tự SBEN = SNFC

⇒ SAMNB - (SAEM + SBEN) = SDMNC - (SBEN + SNFC)

hay SEMN = SFMN

Hai tam giác trên có chung cạnh MN nên đường cao tương ứng bằng nhau hay EP = FQ

Xét ΔEPO và ΔFQO có:

∠EOP = ∠QOF (đối đỉnh)

EP = PQ (cmt)

∠EPO = ∠FQO = 90o

Do đó ΔEPO = ΔFQO (ch–gn) ⇒ OE = OF hay O là trung điểm của EF.