K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Đề sai rồi

6 tháng 10 2019

 mathx

10 tháng 10 2017

Sửa đề: 

\(\frac{x}{2016}=\frac{y}{2017}=\frac{z}{2018}=\frac{y-x}{1}=\frac{z-y}{1}=\frac{z-x}{2}\)

\(\Rightarrow x-z=2\left(x-y\right)=2\left(y-z\right)\)

\(\Rightarrow\left(x-z\right)^3=4\left(x-y\right)^2.2\left(y-z\right)=8\left(x-y\right)^2\left(y-z\right)\)

10 tháng 10 2017

cảm ơn bạn alibaba nguyễn

Bài 1: Tìm phân số dương bất kì biết khi tăng thêm cả tử và số dương bất kì biết khi tăng thêm cả tử và mẫu thêm 3 đơn vị thì phân số tăng thêm 1/6Bài 2: a) Tìm x, y nguyên biết:| x - 2016 | + | x - 2017 | + | y - 2018 | + | x - 2019 | = 3b) chứng minh rằng:2/2 mũ 1 + 3/2 mũ 2 + 4/2 mũ 3 + .... + 2019/2 mũ 2018 < 3Bài 3: a) Tìm n để 1!+2!+3!+....+n! là số chính phươngb) Tim a, x sao cho:(12+3x) = 1a96 ( 1a96 là một số...
Đọc tiếp

Bài 1: Tìm phân số dương bất kì biết khi tăng thêm cả tử và số dương bất kì biết khi tăng thêm cả tử và mẫu thêm 3 đơn vị thì phân số tăng thêm 1/6

Bài 2: 

a) Tìm x, y nguyên biết:

| x - 2016 | + | x - 2017 | + | y - 2018 | + | x - 2019 | = 3

b) chứng minh rằng:

2/2 mũ 1 + 3/2 mũ 2 + 4/2 mũ 3 + .... + 2019/2 mũ 2018 < 3

Bài 3: 

a) Tìm n để 1!+2!+3!+....+n! là số chính phương

b) Tim a, x sao cho:

(12+3x) = 1a96 ( 1a96 là một số tự nhiên, a thuộc N, x thuộc Z )

Bài 4: Cho góc xOy=3 lần góc xOz và yOz=90 độ. Về tia Om là tia phân giác của góc zOy.

a) tính góc xOy, góc xOz

b) tính góc xOm

c) lấy lấy A thuộc tia OX sao cho OA = a cm

Lấy a1, a2, ....., a2019 thuộc tia OA sao cho Oa1 = 1/OA, Oa2 = 2 lần OA1, ......, OA2019 = 2019/2018 lần OA2018. Tính S = 1/Oa1+Oa2+...+Oa2019

Bài 5: Tìm n nguyên biết:

2020 mũ n + n mũ 2020 + 2020n chia hết cho 3

Giúp mình với nhé. Cảm ơn các bạn. Bạn nào xong nhanh nhất minh tick cho. Bạn nào làm được bài nao thì cứ đăng nhé mình tick cho.

 

0

Bài 1: 

\(=\left(15+47\right)\cdot42+42\cdot38=42\left(15+47+38\right)=42\cdot100=4200\)

Bài 2: 

a: \(\Leftrightarrow3^x\left(1+3+3^2\right)=39\)

\(\Leftrightarrow3^x=3\)

hay x=1

b: \(\Leftrightarrow x^{2016}\left(1-x\right)=0\)

hay \(x\in\left\{0;1\right\}\)

DD
12 tháng 10 2021

\(A=5+3^2+3^3+...+3^{2018}\)

\(3A=15+3^3+3^4+...+3^{2019}\)

\(3A-A=\left(15+3^3+3^4+...+3^{2019}\right)-\left(5+3^2+3^3+...+3^{2018}\right)\)

\(2A=1+3^{2019}\)

\(2A-1=3^{2019}\)

Suy ra \(n=2019\).

22 tháng 5 2020

Câu b đề sai nha, bây giờ đặt \(a=\sqrt{2017},b=\sqrt{2018}\)

Ta có \(\frac{a^2}{b}+\frac{b^2}{a}< a+b\Leftrightarrow ab\left(\frac{a^2}{b}+\frac{b^2}{a}\right)< ab\left(a+b\right)\)

\(\Leftrightarrow a^3+b^3< ab\left(a+b\right)\)(1)

Mà \(ab\left(a+b\right)\le\left(a^2-ab+b^2\right)\left(a+b\right)=a^3+b^3\)(2)

Từ (1), (2) => Sai

22 tháng 5 2020

a) Ta có:

\(\frac{1}{\left(k+1\right)\sqrt{k}}=\frac{k+1-k}{\left(k+1\right)\sqrt{k}}=\frac{\left(\sqrt{k+1}+\sqrt{k}\right)\left(\sqrt{k+1}-\sqrt{k}\right)}{\left(k+1\right)\sqrt{k}}\)\(< \frac{2\sqrt{k+1}\left(\sqrt{k+1}-\sqrt{k}\right)}{\left(k+1\right)\sqrt{k}}=\frac{2\left(\sqrt{k+1}-\sqrt{k}\right)}{\sqrt{k+1}\sqrt{k}}=\frac{2}{\sqrt{k}}-\frac{2}{\sqrt{k+1}}\)

Cho k=1,2,....,n rồi cộng từng vế ta có:

\(\frac{1}{2}+\frac{1}{3\sqrt{2}}+\frac{1}{4\sqrt{3}}+....+\frac{1}{\left(n+1\right)\sqrt{n}}< \left(\frac{2}{\sqrt{1}}-\frac{2}{\sqrt{2}}\right)+\left(\frac{2}{\sqrt{2}}-\frac{2}{\sqrt{3}}\right)\)\(+\left(\frac{2}{\sqrt{3}}-\frac{2}{\sqrt{4}}\right)+....+\left(\frac{2}{\sqrt{n}}-\frac{2}{\sqrt{n+1}}\right)=2-\frac{2}{\sqrt{n-1}}< 2\)