K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 3 2020

Ta có mẫu thức bằng

\(=x^2-2.1515+1515^2+1767016=\left(x-1515\right)^2+1767016\ge1767016\)

\(\Rightarrow A\le1767016\Rightarrow A_{MAX}=1767016\Leftrightarrow x=1515\)

5 tháng 12 2019

1

a) 4y^3 x 14x^3

5 tháng 12 2019

Bài 1 a)=56x3y3/7x2yy=xy2

Bai

26 tháng 4 2020

\(A=\frac{1}{x^2-3030x+4062241}\)

\(=\frac{1}{x^2-2.x.1515+2295225+1767016}\)

\(=\frac{1}{\left(x-1515\right)^2+1767016}\)

Ta có : \(\left(x-1515\right)^2\ge0\Rightarrow\left(x-1515\right)^2+1767016\ge1767016\)

\(\Rightarrow A=\frac{1}{\left(x-1515\right)^2+1767016}\le\frac{1}{1767016}\)

Dấu "=" xảy ra \(\Leftrightarrow x-1515=0\Leftrightarrow x=1515\)

8 tháng 2 2020

Ta có: \(A=\frac{1}{x^2-3030x+4062241}\)

\(=\frac{1}{x^2-2.1515x+1515^2+1767016}\)

\(=\frac{1}{\left(x-1515\right)^2+1767016}\)

Ta  có: \(\left(x-1515\right)^2\ge0\forall x\)

\(\Rightarrow Max_A=\frac{1}{1767016}\Leftrightarrow x=1515\)

19 tháng 12 2018

\(A=\frac{1}{x^2-2.1515x+1515^2+1767016}=\frac{1}{\left(x-1515\right)^2+1767016}\le\frac{1}{1767016}\)

Dấu = xảy ra khi x-1515=0

=> x=1515. Vậy...

28 tháng 7 2018

\(C=\frac{30}{4x-4x^2-6}=\frac{-30}{4x^2-4x+6}=\frac{-30}{\left(2x-1\right)^2+5}\)

Vì \(\left(2x-1\right)^2\ge0\Rightarrow\left(2x-1\right)^2+5\ge5\Rightarrow\frac{1}{\left(2x-1\right)^2+5}\le\frac{1}{5}\Rightarrow C=\frac{-30}{\left(2x-1\right)^2+5}\ge\frac{-30}{5}=-6\)

Dấu "=" xảy ra khi x=1/2

Vậy Cmin=-6 khi x=1/2

28 tháng 7 2018

\(E=\frac{1000}{x^2+y^2-20x-20y+2210}=\frac{1000}{\left(x-10\right)^2+\left(y-10\right)^2+2010}\)

Vì \(\left(x-10\right)^2\ge0;\left(y-10\right)^2\ge0\Rightarrow\left(x-10\right)^2+\left(y-10\right)^2\ge0\)

\(\Rightarrow\left(x-10\right)^2+\left(y-10\right)^2+2010\ge2010\)

\(\Rightarrow\frac{1}{\left(x-10\right)^2+\left(y-10\right)^2+2010}\le\frac{1}{2010}\)

\(\Rightarrow E=\frac{1000}{\left(x-10\right)^2+\left(y-10\right)^2+2010}\le\frac{1000}{2010}=\frac{100}{201}\)

Dấu "=" xảy ra khi x=y=10

Vậy Emax = 100/201 khi x=y=10

11 tháng 5 2015

Vì (x+1)2008 \(\ge\) 0 với mọi x => - (x+1)2008 \(\le\) 0 => 20  - (x+1)2008 \(\le\) 20 + 0 = 20 với mọi x

=> A lớn nhất bằng 20 khi x+ 1= 0 <=> x = -1

b) Vì (x-1)2 \(\ge\) 0 với mọi x =>  (x-1) + 90  \(\ge\) 0 + 90 = 90 với mọi x 

=> B nhỏ nhất = 90 khi x -1 = 0 <=> x = 1 

11 tháng 5 2015

đấy nha, tự trả lời đê, ai bảo nói mk kia

3 tháng 1 2016

a. x=-5

b. x=3

Thấy đúng tick giùm cái

3 tháng 1 2016

Các bạn nhớ diễn giải ra nha!

16 tháng 7 2018

Bài 2:

\(P=2010-\left(x+1\right)^{2008}\)

Ta có: \(\left(x+1\right)^{2008}\ge0\forall x\)

\(\Rightarrow2010-\left(x+1\right)^{2008}\le2010\forall x\)

\(P=2010\Leftrightarrow\left(x+1\right)^{2008}=0\Leftrightarrow x=-1\)

Vậy \(x=-1\)thì \(B_{max}=2010\)

16 tháng 7 2018

Bài 1:

\(D=\frac{x+5}{|x-4|}\)

Ta có: \(|x-4|\ge0\forall x\)

\(\Rightarrow D=\frac{x+5}{|x-4|}=\frac{x+5}{x-4}=\frac{x-4+9}{x-4}=1+\frac{9}{x-4}\)

Vì 1 không đổi

Nên để D đạt GTNN thì: \(\frac{9}{x-4}\)phải đạt GTLN

\(\Rightarrow x-4\)phải đạt GTLN

\(\Rightarrow x=13\)

GTNN của \(D=1+\frac{9}{x-4}=1+\frac{9}{13-4}=1+\frac{9}{9}=1+1=2\)

Vậy x=3 thì D đạt GTNN
Bài 2:

\(P=2010-\left(x+1\right)^{2008}\)

Ta có: \(\left(x+1\right)^{2008}\ge0\forall x\)

\(\Rightarrow2010-\left(x+1\right)^{2008}\le2010-0\)

\(\Rightarrow P\le2010\)

\(\Rightarrow\)GTLN của P=2010

\(\Leftrightarrow\left(x+1\right)^{2008}=0\)

\(\Leftrightarrow x+1=0\)

\(\Leftrightarrow x=-1\)

Vậy x=-1 thì P đạt GTLN