Cho ΔABC cân tại A. Lấy điểm D trên cạnh AB , lấy điểm E trên cạnh AE sao cho AD = AE. Gọi K là giao điểm của BE và CD
a) Chứng minh BE = CD
b) Chứng minh ΔKBD = ΔKCE
c) Gọi M là trung điểm của BC. Chứng minh 3 điểm A,K,M thẳng hàng
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét \(\Delta AEB\) và \(\Delta ADC:\)
AE = AD (gt).
\(\widehat{A}chung.\)
AB = AC \((\Delta ABC\) cân tại A).
\(\Rightarrow\Delta AEB=\Delta ADC\left(c-g-c\right).\)
\(\Rightarrow BE=CD.\)
b) \(\Rightarrow\Delta AEB=\Delta ADC\left(cmt\right).\)
\(\Rightarrow\widehat{ABE}=\widehat{ACD}.\)
Ta có: \(\widehat{BDK}=180^o-\widehat{ADC};\widehat{CEK}=180^o-\widehat{AEB}.\)
Mà \(\widehat{AEB}=\widehat{ADC}\left(\Delta AEB=\Delta ADC\right).\)
\(\Rightarrow\widehat{BDK}=\widehat{CEK}.\)
Xét \(\Delta KBD\) và \(\Delta KCE:\)
\(\widehat{DBK}=\widehat{ECK}\left(\widehat{ABE}=\widehat{ACD}.\right).\)
BD = CE (cmt).
\(\widehat{BDK}=\widehat{CEK}\left(cmt\right).\)
\(\Rightarrow\Delta KBD=\Delta KCE\left(g-c-g\right).\)
c) Xét \(\Delta AKB\) và \(\Delta AKC:\)
\(AKchung.\)
AB = AC (\(\Delta ABC\) cân tại A).
KB = KC \(\left(\Delta KBD=\Delta KCE\right).\)
\(\Rightarrow\Delta AKB=\Delta AKC\left(c-c-c\right).\\ \Rightarrow\widehat{KAB}=\widehat{KAC}.\)
\(\Rightarrow\) AK là phân giác của \(\widehat{A}.\)
Xét \(\Delta ABC\) cân tại A:
AK là phân giác của \(\widehat{A}\left(cmt\right).\)
\(\Rightarrow\) AK là đường cao.
\(\Rightarrow AK\perp BC.\)
Xét tam giác ABE và tam giác ADC:
AE=AC(theo gt tam giác ABC cân )
góc A chung
AE=AD(theo gt)
=> Tam giác ABE=tam giác ADC(c.g.c)
nên BE=CD(dpcm)
Vì tam giác ABE=tam giác ACD nên góc ABE=góc ACD( 2 góc tương ứng)
Xét Tam giác DIB và tam giác EIC
góc DKB=góc EKC(đối đỉnh)
AB=AC(tam giác ABC cân) mà AD=AE (gt) =>DB=EC
góc DBI= góc ECI
=>tam giác DIB=tam giác EIC(g.c.g)
=>IB=IC(2 cạnh tương ứng)
=>tam giác IBC là tam giác cân
ĐÚNG NHA
a) Xét \(\Delta ADC\) và \(\Delta AEB\) có:
góc A chung; AB=AC (\(\Delta ABC\) cân tại A) ; AD=AE (gt)
-> \(\Delta ADC\)=\(\Delta AEB\) (c.g.c)
b) Vì \(\Delta ADC\)=\(\Delta AEB\) nên góc ABE = góc ACD (góc tương ứng) (1)
Vì \(\Delta ABC\) cân tại A nên góc ABC = góc ACB (hai góc ở đáy) (2)
Trừ vế theo vế của (2) và (1) ta được: góc ABC - góc ABE = góc ACB - góc ACD
Hay góc IBC = góc ICB
-> Tam gics IBC cân tại I
a: Xét ΔABE và ΔACDcó
AB=AC
góc BAE chung
AE=AD
=>ΔABE=ΔACD
=>BE=CD
b: ΔABE=ΔACD
=>góc ABE=góc ACD
c: góc ABE+góc KBC=góc ABC
góc ACD+góc KCB=góc ACB
mà góc ABE=góc ACD và góc ABC=góc ACB
nên góc KBC=góc KCB
=>KB=KC
d: AB=AC
KB=KC
=>AK là trung trực của BC
=>A,K,I thẳng hàng
b) Ta có: AD+DB=AB(D nằm giữa A và B)
AE+EC=AC(E nằm giữa A và C)
mà AB=AC(ΔABC cân tại A)
và AD=AE(gt)
nên DB=EC
Xét ΔDBC và ΔECB có
DB=EC(cmt)
\(\widehat{DBC}=\widehat{ECB}\)(hai góc ở đáy của ΔABC cân tại A)
BC chung
Do đó: ΔDBC=ΔECB(c-g-c)
Suy ra: \(\widehat{BDC}=\widehat{CEB}\)(hai góc tương ứng)
hay \(\widehat{KDB}=\widehat{KEC}\)
Ta có: ΔABE=ΔACD(cmt)
nên \(\widehat{ABE}=\widehat{ACD}\)(hai góc tương ứng)
hay \(\widehat{DBK}=\widehat{ECK}\)
Xét ΔDBK và ΔECK có
\(\widehat{KDB}=\widehat{KEC}\)(cmt)
DB=EC(cmt)
\(\widehat{DBK}=\widehat{ECK}\)(cmt)
Do đó: ΔKBD=ΔKCE(g-c-g)
a) Sửa đề: BE=DC
Xét ΔABE và ΔACD có
AB=AC(ΔABC cân tại A)
\(\widehat{BAE}\) chung
AE=AD(gt)
Do đó: ΔABE=ΔACD(c-g-c)
Suy ra: BE=CD(hai cạnh tương ứng)
a.Xét tam giác ABE và tam giác ACD, có:
\(\widehat{A}:chung\)
AD = AE ( gt )
AB = AC ( ABC cân )
Vậy tam giác ABE = tam giác ACD ( c.g.c )
b.Xét tam giác DBC và tam giác ECB, có:
BD = CE ( AB=AC; AD=AE )
góc B = góc C ( ABC cân )
BC: cạnh chung
Vậy tam giác DBC = tam giác ECB ( c.g.c )
=> góc DCB = góc EBC ( 2 góc tương ứng )
=> Tam giác KBC là tam giác cân và cân tại K
c.Xét tam giác AKB và tam giác AKC có:
AB=AC ( ABC cân )
góc ABK = góc ACK ( góc B = góc C; góc KBC = góc KCB )
AK: cạnh chung
Vậy tam giác AKB = tam giác AKC ( c.g.c )
=> góc BAK = góc CAK ( 2 góc tương ứng )
Mà Tam giác ADE cân tại A ( AD=AE )
=> AK là đường cao
=> AK vuông DE (1)
Mà Tam giác KBC cân tại K
=> AK vuông với BC (2)
Từ (1) và (2) => DE//BC
d. Ta có: AK là đường cao ( cmt ) cũng là đường trung tuyến
Mà M là trung điểm BC
=> A,K,M thẳng hàng
tham khảo
https://hoc24.vn/hoi-dap/tim-kiem?id=561093&q=Cho%20tam%20gi%C3%A1c%20ABC%20c%C3%A2n%20t%E1%BA%A1i%20A%20.%20%C4%90i%E1%BB%83m%20D%20thu%E1%BB%99c%20c%E1%BA%A1nh%20AB%20%2C%20%C4%91i%E1%BB%83m%20E%20thu%E1%BB%99c%20c%E1%BA%A1nh%20AC%20sao%20cho%20AD%20%3D%20AE%20.%20G%E1%BB%8Di%20K%20l%C3%A0%20giao%20%C4%91i%E1%BB%83m%20c%E1%BB%A7a%20BE%20v%C3%A0%20CD%20.%20Ch%E1%BB%A9ng%20minh%20r%E1%BA%B7ng%20%20%20a%29%20BE%20%3D%20CD%20%20b%29%20Tam%20gi%C3%A1c%20KBD%20b%E1%BA%B1ng%20tam%20gi%C3%A1c%20KCE%20%20c%29%20AK%20l%C3%A0%20ph%C3%A2n%20gi%C3%A1c%20c%E1%BB%A7a%20g%C3%B3c%20A%20%20d%29%20Tam%20gi%C3%A1c%20KBC%20c%C3%A2n
a, Ta có : \(AD=AE\left(gt\right)\)
→ ΔADE là tam giác cân ở A
\(\Rightarrow\widehat{ADE}=\widehat{AED}=\dfrac{180^0-\widehat{A}}{2}=\dfrac{180^0-40}{2}=70^0\)
Mà ΔABC cũng là tam giác cân
\(\Rightarrow\widehat{ABC}=\dfrac{180^0-\widehat{A}}{2}=70^0\)
\(\Rightarrow\widehat{ADE}=\widehat{ABC}\left(=70^0\right)\)
mà 2 góc này ở vị trí so le trong
\(\Rightarrow DE//BC\)
b, Xét ΔABE và ΔACD có :
\(AB=AC\left(\Delta ABC\cdot cân\right)\)
\(\widehat{A}:chung\)
\(AD=AE\left(gt\right)\)
\(\Rightarrow\Delta ABE=\Delta ACD\left(c-g-c\right)\)
c, Nối dài đoạn AI xuống BC, ta được đường phân giác AK của tam giác ABC.
Mà ΔABC cân ở A
→ AK là đường trung tuyến của tam giác ABC
→ AI cũng là đường trung tuyến của tam giác ABC
a) Xét t/giác ABE và t/giác ACD
có: AB = AC (gt)
góc A : chung
AD = AE (gt)
=> t/giác ABE = t/giác ACD (c.g.c)
=> BE = CD (2 cạnh t/ứng)
b) Ta có: AB = AC (gt) ; AD = AE (gt) => BD = CE
\(\widehat{D1}+\widehat{D2}=180^0\)(kề bù)
\(\widehat{E1}+\widehat{E2}=180^0\)(kề bù)
mà \(\widehat{D2}=\widehat{E2}\) (do t/giác ABE = t/giác ACD)
=> \(\widehat{D1}=\widehat{E1}\)
Xét t/giác BMD và t/giác CME
có : BD = CE (cmt)
\(\widehat{D1}=\widehat{E2}\)(cmt)
\(\widehat{B1}=\widehat{C1}\)(do t/giác ABE = t/giác ACD)
=> t/giác BMD = t/giác CME (g.c.g)
c)Xét t/giác ABM và t/giác ACM
có: AB = AC (gt)
AM : chung
BM = CM (do t/giác BMD = t/giác CME)
=> t/giác ABM = t/giác ACM (c.c.c)
=> \(\widehat{A1}=\widehat{A2}\) (2 góc t/ứng)
=> AM là tia p/giác của góc BAC
a) △ABC cân tại A \(\Rightarrow\left\{{}\begin{matrix}AB=AC\\\widehat{ABC}=\widehat{ACB}\end{matrix}\right.\)
Xét △ABE và △ACD có:
\(AB=AC\\ \widehat{A}:\text{ góc chung}\\ AE=AD\)
\(\Rightarrow\text{△ABE = △ACD (c.g.c)}\)
\(\Rightarrow BE=CD\left(\text{2 cạnh tương ứng}\right)\)
b) \(\text{△ABE = △ACD (c.g.c)}\)
\(\Rightarrow\left\{{}\begin{matrix}\widehat{ABE}=\widehat{ACD}\\\widehat{AEB}=\widehat{ADC}\end{matrix}\right.\)(2 góc tương ứng)
Mà \(\widehat{AEB}+\widehat{BEC}=180^o\\ \widehat{ADC}+\widehat{CDB}=180^o\)(2 góc kề bù)
\(\Rightarrow\widehat{BEC}=\widehat{CDB}\)
Có AD = AE
Mà AB = AC
\(\Rightarrow BD=CE\)
Xét △KBD và △KCE có:
\(\widehat{KBD}=\widehat{KCE}\\ BD=CE\\ \widehat{KDB}=\widehat{KEC}\)
\(\Rightarrow\text{△KBD = △KCE (g.c.g)}\)
c) \(\text{△KBD = △KCE (g.c.g)}\)
\(\Rightarrow KB=KC\) (2 cạnh tương ứng)
Xét △AKB và △AKC có:
\(AB=AC\\ KB=KC\\ AK:\text{cạnh chung}\)
\(\Rightarrow\text{△AKB = △AKC (c.c.c)}\)
\(\Rightarrow\widehat{KAB}=\widehat{KAC}\) (2 góc tương ứng)
Mà AK nằm giữa AB và AC
\(\Rightarrow\) AK là tia phân giác của \(\widehat{BAC}\) (1)
Xét △AMB và △AMC có:
\(AB=AC\\ MB=MC\\ AM:\text{cạnh chung}\)
\(\Rightarrow\text{△AMB = △AMC (c.c.c)}\)
\(\Rightarrow\widehat{MAB}=\widehat{MAC}\) (2 góc tương ứng)
Mà AM nằm giữa AB và AC
\(\Rightarrow\) AM là tia phân giác của \(\widehat{BAC}\) (2)
(1) (2) \(\Rightarrow\) A;K;M thẳng hàng
a) Xét ΔABE và ΔACD có
AE=AD(gt)
\(\widehat{A}\) chung
AB=AC(ΔABC cân tại A)
Do đó: ΔABE=ΔACD(c-g-c)
⇒BE=CD(hai cạnh tương ứng)
b)Ta có: ΔABE=ΔACD(cmt)
⇒\(\widehat{ABE}=\widehat{ACD}\)(hai góc tương ứng)
hay \(\widehat{DBK}=\widehat{ECK}\)
Ta có: AD+DB=AB(do A,D,B thẳng hàng)
AE+EC=AC(do A,E,C thẳng hàng)
mà AB=AC(ΔABC cân tại A)
và AD=AE(gt)
nên BD=EC
Xét ΔDKB có
\(\widehat{D_1}+\widehat{K_1}+\widehat{B_1}=180^0\)(định lí tổng ba góc trong một tam giác)(1)
Xét ΔKEC có
\(\widehat{E_1}+\widehat{K_2}+\widehat{C_1}=180^0\)(định lí tổng ba góc trong một tam giác)(2)
Ta có: \(\widehat{B_1}=\widehat{C_1}\)(cmt)(3)
và \(\widehat{K_1}=\widehat{K_2}\)(hai góc đối đỉnh)(4)
Từ (1), (2), (3) và (4) suy ra \(\widehat{D_1}=\widehat{E_1}\)
Xét ΔKBD và ΔKEC có
\(\widehat{B_1}=\widehat{C_1}\)(cmt)
BD=EC(cmt)
\(\widehat{D_1}=\widehat{E_1}\)(cmt)
Do đó: ΔKBD=ΔKEC(g-c-g)
c) Ta có: AB=AC(ΔABC cân tại A)
⇒A nằm trên đường trung trực của BC(t/c đường trung trực của một đoạn thẳng)(5)
Ta có: KB=KC(ΔKBD=ΔKCE)
⇒K nằm trên đường trung trực của BC(t/c đường trung trực của một đoạn thẳng)(6)
Ta có: MB=MC(M là trung điểm của BC)
⇒M nằm trên đường trung trực của BC(t/c đường trung trực của một đoạn thẳng)(7)
Từ (5), (6) và (7) suy ra A,K,M thẳng hàng(đpcm)