tìm x
2x là bội của x-1
giúp mình với
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Leftrightarrow\left|3x-2\right|>x+1\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}3x-2>0\\x+1< 0\end{matrix}\right.\\\left\{{}\begin{matrix}x+1>0\\3x-2>x^2+2x+1\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x>-1\\x^2+2x+1-3x+2< 0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x>-1\\x^2-x+3< 0\end{matrix}\right.\Leftrightarrow x\in\varnothing\)
1.
Đặt \(x-2=t\ne0\Rightarrow x=t+2\)
\(B=\dfrac{4\left(t+2\right)^2-6\left(t+2\right)+1}{t^2}=\dfrac{4t^2+10t+5}{t^2}=\dfrac{5}{t^2}+\dfrac{2}{t}+4=5\left(\dfrac{1}{t}+\dfrac{1}{5}\right)^2+\dfrac{19}{5}\ge\dfrac{19}{5}\)
\(B_{min}=\dfrac{19}{5}\) khi \(t=-5\) hay \(x=-3\)
2.
Đặt \(x-1=t\ne0\Rightarrow x=t+1\)
\(C=\dfrac{\left(t+1\right)^2+4\left(t+1\right)-14}{t^2}=\dfrac{t^2+6t-9}{t^2}=-\dfrac{9}{t^2}+\dfrac{6}{t}+1=-\left(\dfrac{3}{t}-1\right)^2+2\le2\)
\(C_{max}=2\) khi \(t=3\) hay \(x=4\)
\(\left(\dfrac{1}{15}+\dfrac{1}{35}+\dfrac{1}{63}\right)x=1\)
\(\Leftrightarrow\dfrac{1}{9}x=1\)
\(\Leftrightarrow x=1:\dfrac{1}{9}\)
\(\Leftrightarrow x=9\)
=>1/2(2/15+2/35+2/63)*x=1
=>1/2(1/3-1/5+1/5-1/7+1/7-1/9)*x=1
=>1/2*2/9*x=1
=>x*1/9=1
=>x=9
\(x-\dfrac{1}{2}=\dfrac{4}{7}\\ x=\dfrac{4}{7}+\dfrac{1}{2}\\ x=\dfrac{15}{14}\\ \dfrac{19}{7}-x=\dfrac{27}{2}-1\\ \dfrac{19}{7}-x=\dfrac{25}{2}\\ x=\dfrac{19}{7}-\dfrac{25}{2}\\ x=-\dfrac{137}{14}\)
\(P=x^4+2x^2+1-x^2=\left(x^2+1\right)^2-x^2\)
\(P=\left(x^2-x+1\right)\left(x^2+x+1\right)\)
\(\Rightarrow\) P luôn có ít nhất 2 ước số là \(x^2-x+1\) và \(x^2+x+1\)
Do \(x^2+x+1\ge x^2-x+1\) nên P là SNT khi và chỉ khi \(x^2-x+1=1\) đồng thời \(x^2+x+1\) là SNT
\(x^2-x+1=1\Leftrightarrow x^2-x=0\Rightarrow\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\)
- Với \(x=0\Rightarrow x^2+x+1=1\) ko phải SNT (loại)
- Với \(x=1\Rightarrow x^2+x+1=3\) là SNT (t/m)
Vậy \(x=1\)
a, để pt trên là pt bậc nhất khi m khác 2
b, Ta có \(2x+5=x+7-1\Leftrightarrow x=1\)
Thay x = 1 vào pt (1) ta được
\(2\left(m-2\right)+3=m-5\Leftrightarrow2m-1=m-5\Leftrightarrow m=-4\)