K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Xét ΔACH vuông tại H và ΔBCA vuông tại A có

\(\widehat{C}\) chung

Do đó: ΔACH\(\sim\)ΔBCA(g-g)

\(\Leftrightarrow\dfrac{AC}{BC}=\dfrac{CH}{CA}\)(Các cặp cạnh tương ứng tỉ lệ)

hay \(AC^2=CH\cdot CB\)(đpcm)

b) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow AC^2=BC^2-AB^2=10^2-6^2=64\)

hay AC=8(cm)

Thay AC=8cm và BC=10cm vào biểu thức \(AC^2=CH\cdot BC\), ta được:

\(CH\cdot10=8^2=64\)

hay CH=6,4(cm)

Ta có: CH+BH=BC(H nằm giữa B và C)

nên BH=BC-CH=10-6,4=3,6(cm)

Vậy: BH=3,6cm; CH=6,4cm

c) Xét ΔABH vuông tại H và ΔCAH vuông tại H có

\(\widehat{ABH}=\widehat{CAH}\)(cùng phụ với \(\widehat{BAH}\))

Do đó: ΔABH\(\sim\)ΔCAH(g-g)

\(\Leftrightarrow\dfrac{AH}{CH}=\dfrac{BH}{AH}\)(Các cặp cạnh tương ứng tỉ lệ)

hay \(AH^2=BH\cdot CH\)(đpcm)

Đề sai rồi bạn

19 tháng 3 2021

Đề này đúng mà, hôm đó thầy mik chữa r!

 

DM
31 tháng 1 2018

Áp dụng định lí Pitago cho 3 tam giác vuông ABH,ACH,ABC ta có:

                                                \(AH^2+BH^2=AB^2\)

                                               \(AH^2+CH^2=AC^2\)

                                              \(AB^2+AC^2=BC^2\)

Cộng theo vế ba đẳng thức trên và rút gọn ta được    \(2AH^2+BH^2+CH^2=BC^2\).

19 tháng 2 2020

Hình bạn tự vẽ nhé

a) Áp dụng định lý Pytago vào \(\Delta AHB\)vuông tại H ta được:

\(AB^2=BH^2+AH^2\Rightarrow AH^2=AB^2-BH^2\)(1)

Áp dụng định lý Pytago vào \(\Delta HAC\)vuông tại H ta được:

\(AC^2=AH^2+CH^2\Rightarrow AH^2=AC^2-CH^2\)(2)

Từ (1) và (2) \(\Rightarrow AC^2-CH^2=AB^2-BH^2\)

\(\Leftrightarrow AB^2+CH^2=AC^2+BH^2\)(ĐCCM)

b) Áp dụng định lý Pytago vào\(\Delta ABC\) vuông tại A ta được:

\(BC^2=AC^2+AB^2\)\(=\left(AH^2+CH^2\right)+\left(AH^2+BH^2\right)=2AH^2+CH^2+BH^2\)(ĐCCM)

Áp dụng định lí Pytago vào ΔABH vuông tại H, ta được:

\(AB^2=AH^2+BH^2\)

Áp dụng định lí Pytago vào ΔACH vuông tại H, ta được:

\(AC^2=AH^2+CH^2\)

Ta có: \(AB^2-AC^2=AH^2+BH^2-\left(AH^2+CH^2\right)\)

\(=AH^2+BH^2-AH^2-CH^2\)

\(=BH^2-HC^2\)(đpcm)

1) Xét ΔABH vuông tại H và ΔACH vuông tại H có 

AB=AC(ΔABC cân tại A)

AH chung

Do đó: ΔABH=ΔACH(cạnh huyền-cạnh góc vuông)

5 tháng 4 2021

bn trả lời mấy ý còn lại hộ mk vs