Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b) Xét ΔABH vuông tại H và ΔCBA vuông tại A có
\(\widehat{ABH}\) chung
Do đó: ΔABH\(\sim\)ΔCBA(g-g)
Suy ra: \(\dfrac{AB}{CB}=\dfrac{HB}{AB}\)(Các cặp cạnh tương ứng tỉ lệ)
hay \(AB^2=BC\cdot BH\)(đpcm)
Có gấp thế nào đi nữa thì phải đủ dữ kiện đề tụi tớ mới giúp được cậu nhé :))
a, Xét tam giác HBA và tam giác ABC có
^B _ chung ; ^BHA = ^BAC = 900
Vậy tam giác HBA ~ tam giác ABC (g.g)
Theo định lí Pytago tam giác ABC vuông tại A
\(BC=\sqrt{AB^2+AC^2}=10cm\)
\(\dfrac{AH}{AC}=\dfrac{AB}{BC}\Rightarrow AH=\dfrac{48}{10}=\dfrac{24}{5}cm\)
\(\dfrac{BH}{AB}=\dfrac{AB}{BC}\Rightarrow BH=\dfrac{AB^2}{BC}=\dfrac{36}{10}=\dfrac{18}{5}cm\)
b, Xét tam giác CHI và tan giác CAH có
^AIH = ^CHA = 900
^C _ chung
Vậy tam giác CHI ~ tam giác CAH (g.g)
\(\dfrac{CH}{AC}=\dfrac{CI}{CH}\Rightarrow CH^2=CI.AC\)
a: BC=căn 6^2+8^2=10cm
b: Xét ΔBAC vuông tại A và ΔBHA vuông tại H có
góc B chung
=>ΔBAC đồng dạng với ΔBHA
c: BA/BH=BC/BA
=>BA^2=BH*BC
BH=6^2/10=3,6cm
HC=10-3,6=6,4cm
d: AD là phân giác
=>DB/AB=DC/AC
=>DB/3=DC/4=10/7
=>DB=30/7cm
a) Xét tam giác ABC có : BN = CN
AP = PC
suy ra : NP là đường trung bình của tam giác ABC
suy ra : NP song song với AB và NP = AB/2
Xét tam giác ABC có : AM = BM ; BN = CN
suy ra MN là đường trung bình của tam giác ABC
suy ra MN song song với AC và MN = AC/2
Xét tứ giác AMNP có : MN song song với AP ( MN song song AC )
NP song song với MA ( NP song song AB )
suy ra : tứ giác AMNP là hbh
mà góc BAC = 90 độ
suy ra : hbh AMNP là hcn
b) Ta có : công thức tính diện tích hcn là : a.b ( trong đó a,b là chiều dài hai cạnh kề nhau của hcn )
suy ra : công thức tính diện tích hcn AMNP là :
SAMNP = MN.NP
Ta có : MN = AC/2
mà AC = 8
suy ra : MN = 8/2 = 4cm
Ta có : NP = AB/2
mà AB = 6
suy ra : NP = 6/2 = 3cm
suy ra : diện tích hcn AMNP = 4.3 = 12 (cm2)
c) phần c hình như sai rồi á bạn
d) Ta có : AMNP là hcn ( đã C/M ở phần a )
Để hcn AMNP là hình vuông
khi và chỉ khi : MA = MN
mà MA = BA/2
MN = CA/2
suy ra : để hcn nhật AMNP là hv thì AB = AC
a) Xét ΔACH vuông tại H và ΔBCA vuông tại A có
\(\widehat{C}\) chung
Do đó: ΔACH\(\sim\)ΔBCA(g-g)
\(\Leftrightarrow\dfrac{AC}{BC}=\dfrac{CH}{CA}\)(Các cặp cạnh tương ứng tỉ lệ)
hay \(AC^2=CH\cdot CB\)(đpcm)
b) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow AC^2=BC^2-AB^2=10^2-6^2=64\)
hay AC=8(cm)
Thay AC=8cm và BC=10cm vào biểu thức \(AC^2=CH\cdot BC\), ta được:
\(CH\cdot10=8^2=64\)
hay CH=6,4(cm)
Ta có: CH+BH=BC(H nằm giữa B và C)
nên BH=BC-CH=10-6,4=3,6(cm)
Vậy: BH=3,6cm; CH=6,4cm
c) Xét ΔABH vuông tại H và ΔCAH vuông tại H có
\(\widehat{ABH}=\widehat{CAH}\)(cùng phụ với \(\widehat{BAH}\))
Do đó: ΔABH\(\sim\)ΔCAH(g-g)
\(\Leftrightarrow\dfrac{AH}{CH}=\dfrac{BH}{AH}\)(Các cặp cạnh tương ứng tỉ lệ)
hay \(AH^2=BH\cdot CH\)(đpcm)