Chứng minh rằng không có số hữu tỉ nào thoả mãn: a) x2 = 7 b) x2 – 3x = 1 c) x + với x khác 1 và -1.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(x^2=7\Rightarrow x=+-\sqrt{7}\Rightarrow\) x k là số hữu tỉ
\(x^2-3x-1=0\Leftrightarrow\left(x^2-3x+\frac{9}{4}\right)-\frac{13}{4}\Leftrightarrow\left(x-\frac{3}{2}\right)^2=\frac{13}{4}\Leftrightarrow x=\frac{3+-\sqrt{13}}{2}\)=> x k là số hữu tỉ
\(x=\frac{1}{x}\Leftrightarrow x^2=1\Leftrightarrow x=+-1\). mà x khác 2 gtrị này => k có x t/m
bạn có thể làm theo cách của lớp 6 giúp mk dc ko Nguyễn Thị BÍch Hậu
Mik cũng mún giúp bạn lắm nhưng mà mik kém toán ( mik suy nghĩ rồi mà nó ko ra dc chữ nào bạn ạ)
Khi nào bạn hỏi về môn Văn hoặc Anh thì mik sẽ giúp bạn...
1, Với x >= 0 ; x khác 1
\(P=\dfrac{\sqrt{x}\left(x-1\right)+2\sqrt{x}\left(\sqrt{x}-1\right)-\left(3x+1\right)\left(\sqrt{x}+1\right)}{\left(x-1\right)\left(\sqrt{x}+1\right)}\)
\(=\dfrac{x\sqrt{x}+2x-3\sqrt{x}-3x\sqrt{x}-3x-\sqrt{x}-1}{\left(x-1\right)\left(\sqrt{x}+1\right)}\)
\(=\dfrac{-2x\sqrt{x}-x-4\sqrt{x}-1}{\left(x-1\right)\left(\sqrt{x}+1\right)}\)
mình sửa đề câu 2 nhé
a, \(x^2+mx-1=0\)
\(\Delta=m^2-4\left(-1\right)=m^2+4>0\)
Vậy pt luôn có 2 nghiệm pb
b, Theo Vi et : \(\left\{{}\begin{matrix}x_1+x_2=-m\\x_1x_2=-1\end{matrix}\right.\)
Ta có : \(\left(x_1+x_2\right)^2-2x_1x_2=7\)
Thay vào ta được : \(m^2+2=7\Leftrightarrow m^2=5\Leftrightarrow m=\pm\sqrt{5}\)