cho tam giác abc vuông tại a, ah vuông góc với bc tại h. tính độ dài các cạnh của tam giác abc biết ah = 4 cm, hb = 2cm, hc = 8 cm
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
cho tam giác ABC cân tại A, kẻ AH vuông góc BC ( H thuộc BC )
a) CHỨNG MINH GÓC BAH = GÓC CEB
b) CHO AH= 3 cm , BC= 8 cm . TÍNH ĐỘ DÀI AC
c) KẺ HE VUÔNG GÓC AB , HD VUÔNG GÓC AC , CHỨNG MINH AE=AD
d) CHỨNG MINH ED SONG SONG BC
trả lời :
Xét \(\Delta\)ABC vuông tại A , có:
AH là đường cao (H\(\in\)BC)
Ta lại có: BC = HB + HC = 2 + 8 = 10 (cm) (1)
\(\Delta\)ABC vuông tại A
=> BC là cạnh huyền (2)
Từ (1) và (2) => AH = \(\frac{1}{2}\)BC = 4(cm)
a: Xet ΔABC vuông tại A và ΔHBA vuông tại H có
góc B chung
=>ΔABC đồng dạng với ΔHBA
b: ΔBCA vuông tại A có AH vuông góc BC
nên AH^2=HB*CH
c: \(BC=\sqrt{6^2+8^2}=10\left(cm\right)\)
AH=6*8/10=4,8cm
+) +) Xét Δ ABH vuông tại H
\(\Rightarrow AB^2=AH^2+BH^2\) ( định lí Py-ta-go )
\(\Rightarrow AB^2=4^2+2^2\)
\(\Rightarrow AB^2=16+4=20\)
\(\Rightarrow AB=\sqrt{20}\) ( do AB > 0 )
+) Xét Δ AHC vuông tại H
\(\Rightarrow AC^2=AH^2+HC^2\) ( định lí Py-ta-go)
\(\Rightarrow AC^2=4^2+8^2\)
\(\Rightarrow AC^2=16+64=80\)
\(\Rightarrow AC=\sqrt{80}\) ( do AC > 0 )
+) Ta có \(AH\perp BC\) tại H
\(\Rightarrow H\in BC\)
\(\Rightarrow\) HB + HC = BC
=> BC = 2 + 8 = 10 ( cm)
Vậy ...
@@ Học tốt
Đề bài nó cho số k đẹp hay là t tính sai nhỉ ?
cảm ơn bạn nha mình k cho bạn 3 k rồi đó