K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 2 2020

Bài 1:

\(\left(x-2013\right)^{2014}=1\)

\(\Leftrightarrow\orbr{\begin{cases}x-2013=1\\x-2013=-1\end{cases}\Leftrightarrow\orbr{\begin{cases}x=2014\\x=2012\end{cases}}}\)

Vậy x=2014; x=2012

Bài 2: 

a) Ta có: \(2^{333}=\left(2^3\right)^{111}=8^{111}\)

\(3^{222}=\left(3^2\right)^{111}=9^{111}\)

Ta thấy 8<9 => \(8^{111}< 9^{111}\Rightarrow2^{333}< 3^{222}\)

b) Ta có: \(9^{1005}=\left(3^2\right)^{1005}=3^{2010}\)

Ta thấy \(3^{2009}< 3^{2010}\Rightarrow3^{2009}< 9^{1005}\)

c) \(99^{20}=\left(99^2\right)^{10}=9801^{10}\)

Thấy \(9801< 9999\Rightarrow9801^{10}< 9999^{10}\Rightarrow99^2< 9999^{10}\)

26 tháng 2 2020

B1:                                                                                                                                                                                                                            (x-2013)2014=1                                                                                                                                                                                                =>x-2013=1;-1=>x=2014;2012                                                                                                                                                                          B2:                                                                                                                                                                                                                       a)có:2333=(23)111=8111 ;  3222=(32)111=9111                                                                                                                                                         =>2333<3222(8111<9111)                                                                                                                                                              b)có:91005=(32)1005=32010 >32009                                                                                                                                                                      =>91005>32009                                                                                                                                                                                             c)có:9920=(992)10=980110<999910                                                                                                                                                                    =>9920<999910

2 tháng 12 2018

Ta có : \(2^{333}=\left(2^3\right)^{111}=8^{111}\)

\(3^{222}=\left(3^2\right)^{111}=9^{111}\)

Do : \(8^{111}< 9^{111}\left(8< 9\right)\)

\(\Rightarrow2^{333}< 3^{222}\)

2 tháng 12 2018

Ta có : \(9^{1005}=\left(3^2\right)^{1005}=3^{2010}\)

Do : \(3^{2009}< 3^{2010}\left(2009< 2010\right)\)

\(\Rightarrow3^{2009}< 9^{1005}\)

21 tháng 12 2021

\(2^{333}< 3^{222}\)

21 tháng 12 2021

mình cần cách giải

3 tháng 12 2017

a)\(\left(x-2013\right)^{2014}=1\Leftrightarrow\left[{}\begin{matrix}x-2013=1\\x-2013=-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2014\\x=2012\end{matrix}\right.\)

b) \(2^{333}=\left(2^3\right)^{111}=8^{111}< 9^{111}=\left(3^2\right)^{111}=3^{222}\)

\(3^{2009}< 3^{2010}=\left(3^2\right)^{1005}=9^{1005}\)

NV
27 tháng 7 2021

Phương trình (C1) chắc chắn sai rồi em

11 tháng 10 2019

Bài 1: Đặt \(f\left(x\right)=\left(x^2+x+1\right)^{10}+\left(x^2-x+1\right)^{10}-2\)

Giả sử  \(f\left(x\right)\)chia hết cho x-1

\(\Rightarrow f\left(x\right)=\left(x-1\right)q\left(x\right)\)

\(\Rightarrow f\left(1\right)=\left(1-1\right)q\left(1\right)\)

               \(=0\)

\(\Leftrightarrow\left(1^2+1+1\right)^{10}+\left(1^2-1+1\right)^{10}-2=0\)

Mà \(\left(1^2+1+1\right)^{10}+\left(1^2-1+1\right)^{10}-2=59048\)

\(\Rightarrow\)mâu thuẫn 

\(\Rightarrow f\left(x\right)\)không chia hết cho x-1 ( trái với đề bài )

Bài 2:

x^4-x^3-3x^2+ax+b x^2-x-2 x^2-1 x^4-x^3-2x^2 - - -x^2+ax+b -x^2+x+2 - (a-1)x+b-2

Vì \(x^4-x^3-3x^2+ax+b\)chia cho \(x^2-x-2\)dư \(2x-3\)

\(\Rightarrow\left(a-1\right)x+b-2=2x-3\)

Đồng nhất hệ  số 2 vế ta được:

\(\hept{\begin{cases}a-1=2\\b-2=-3\end{cases}\Leftrightarrow}\hept{\begin{cases}a=3\\b=-1\end{cases}}\)

Vậy ...

Bài 3:

Vì \(P\left(x\right)\)chia \(x+3\)dư 1

\(\Rightarrow P\left(x\right)=\left(x+3\right)q\left(x\right)+1\)

\(\Rightarrow q\left(-3\right)=\left(-3+3\right)q\left(-3\right)+1\)

                      \(=1\left(1\right)\)

Vì \(P\left(x\right)\)chia \(x-4\)dư 8

\(\Rightarrow P\left(x\right)=\left(x-4\right)q\left(x\right)+8\)

\(\Rightarrow P\left(4\right)=\left(4-4\right)q\left(4\right)+8\)

                    \(=8\left(2\right)\)

Vì \(P\left(x\right)\)chia cho \(\left(x+3\right)\left(x-4\right)\)được thương là 3x và còn dư

\(\Rightarrow P\left(x\right)=\left(x+3\right)\left(x-4\right)3x+ax+b\left(3\right)\)

Từ (1) , (2) và (3) \(\Rightarrow\hept{\begin{cases}-3a+b=1\\4a+b=8\end{cases}\Leftrightarrow\hept{\begin{cases}-12a+3b=4\\12a+3b=24\end{cases}\Leftrightarrow}\hept{\begin{cases}b=4\\a=1\end{cases}\left(4\right)}}\)

Thay (4) vào (3) ta được:

\(P\left(x\right)=\left(x+3\right)\left(x-4\right)3x+x+4\)

\(\Leftrightarrow P\left(x\right)=3x^3-3x^2-20x+4\)

11 tháng 10 2019

cảm ơn nhé