K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 12 2018

Ta có : \(2^{333}=\left(2^3\right)^{111}=8^{111}\)

\(3^{222}=\left(3^2\right)^{111}=9^{111}\)

Do : \(8^{111}< 9^{111}\left(8< 9\right)\)

\(\Rightarrow2^{333}< 3^{222}\)

2 tháng 12 2018

Ta có : \(9^{1005}=\left(3^2\right)^{1005}=3^{2010}\)

Do : \(3^{2009}< 3^{2010}\left(2009< 2010\right)\)

\(\Rightarrow3^{2009}< 9^{1005}\)

26 tháng 2 2020

Bài 1:

\(\left(x-2013\right)^{2014}=1\)

\(\Leftrightarrow\orbr{\begin{cases}x-2013=1\\x-2013=-1\end{cases}\Leftrightarrow\orbr{\begin{cases}x=2014\\x=2012\end{cases}}}\)

Vậy x=2014; x=2012

Bài 2: 

a) Ta có: \(2^{333}=\left(2^3\right)^{111}=8^{111}\)

\(3^{222}=\left(3^2\right)^{111}=9^{111}\)

Ta thấy 8<9 => \(8^{111}< 9^{111}\Rightarrow2^{333}< 3^{222}\)

b) Ta có: \(9^{1005}=\left(3^2\right)^{1005}=3^{2010}\)

Ta thấy \(3^{2009}< 3^{2010}\Rightarrow3^{2009}< 9^{1005}\)

c) \(99^{20}=\left(99^2\right)^{10}=9801^{10}\)

Thấy \(9801< 9999\Rightarrow9801^{10}< 9999^{10}\Rightarrow99^2< 9999^{10}\)

26 tháng 2 2020

B1:                                                                                                                                                                                                                            (x-2013)2014=1                                                                                                                                                                                                =>x-2013=1;-1=>x=2014;2012                                                                                                                                                                          B2:                                                                                                                                                                                                                       a)có:2333=(23)111=8111 ;  3222=(32)111=9111                                                                                                                                                         =>2333<3222(8111<9111)                                                                                                                                                              b)có:91005=(32)1005=32010 >32009                                                                                                                                                                      =>91005>32009                                                                                                                                                                                             c)có:9920=(992)10=980110<999910                                                                                                                                                                    =>9920<999910

21 tháng 12 2021

\(2^{333}< 3^{222}\)

21 tháng 12 2021

mình cần cách giải

5 tháng 12 2016

a, Ta có : \(2^{333}=\left(2^3\right)^{111}=8^{111}\)

         \(3^{222}=\left(3^2\right)^{111}=9^{111}\)

Vì \(8^{111}< 9^{111}\Rightarrow2^{333}< 3^{222}\)

b, Ta có : \(9^{1005}=\left(3^2\right)^{1005}=3^{2010}\)

\(\Rightarrow3^{2009}< 9^{1005}\)

c, Ta có : \(99^{20}=\left(99^2\right)^{10}=9801^{10}\)

Vì \(9801^{10}< 9999^{10}\Rightarrow99^{20}< 9999^{10}\)

5 tháng 12 2016

a) Ta có: \(2^{333}=\left(2^3\right)^{111}=8^{111}\)

\(3^{222}=\left(3^2\right)^{111}=9^{111}\)

Vì 9>8 nên 9111>8111

Vậy 3222>2333

b) Ta có: \(9^{1005}=\left(3^2\right)^{1005}=3^{2010}\)

Vì 2010>2009 nên 32010>32009

Vậy 91005>32009

c)Ta có:\(99^{20}=\left(99^2\right)^{10}=\left(99.99\right)^{10}\)

\(9999^{10}=\left(99.101\right)^{10}\)

Vì 99<101 nên (99.99)10<(99.101)10

Vậy 9920<999910

16 tháng 12 2019

a) \(2^{333}=2^{3.111}=\left(2^3\right)^{111}=8^{111}\)

  \(3^{222}=3^{2.111}=\left(3^2\right)^{111}=9^{111}\)

Vì \(8< 9\)\(\Rightarrow8^{111}< 9^{111}\)\(\Rightarrow2^{333}< 3^{222}\)

b) \(9^{1005}=\left(3^2\right)^{1005}=3^{2.1005}=3^{2010}>3^{2009}\)

24 tháng 12 2017

\(A,2^{333}\)\(3^{222}\)

Ta có:

\(2^{333}=\left(2^3\right)^{111}=8^{111}\)

\(3^{222}=\left(3^2\right)^{111}=9^{111}\)

Vì 8<9 \(\Rightarrow8^{111}< 9^{111}\)

\(\Rightarrow2^{333}< 3^{222}\)

B,\(3^{2009}\)\(9^{2005}\)

Ta có:

\(9^{2005}=\left(3^2\right)^{2005}=3^{4010}\)

Vì 2009 < 4010 \(\Rightarrow3^{2009}< 3^{4010}\)

11 tháng 12 2018

\(2^{333}=\left(2^3\right)^{111}=8^{111}\)

\(3^{222}=\left(3^2\right)^{111}=9^{111}\)

Có: \(8^{111}< 9^{111}\)

\(\Leftrightarrow2^{333}< 3^{222}\)

11 tháng 12 2018

\(9^{1005}=\left(3^2\right)^{1005}=3^{2010}\)

Có: \(3^{2010}>3^{2009}\)

\(\Rightarrow9^{1005}>3^{2009}\)

\(90^{20}=\left(90^2\right)^{10}=8100^{10}\)

Có: \(8100^{10}< 9999^{10}\)

\(\Rightarrow90^{20}< 9999^{10}\)

19 tháng 9 2018

\(2^{225}=8^{75}< 9^{75}=3^{150}\)

\(2^{91}>2^{90}=32^{18}>25^{18}=5^{36}>5^{35}\)

\(99^{20}=\left(99.99\right)^{10}< \left(99.101\right)^{10}=9999^{10}\)

19 tháng 9 2018

a, \(2^{225}=\left(2^3\right)^{75}\) 

    \(3^{150}=\left(3^2\right)^{75}\)

b,\(2^{91}=\left(2^{13}\right)^7\)

\(5^{35}=\left(5^5\right)^7\)

c,\(99^{20}=\left(99\cdot99\right)^{10}\)

\(9999^{10}=\left(99\cdot101\right)^{10}\)