K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

DD
19 tháng 10 2021

\(D=6+6^2+6^3+6^4+...+6^{120}\)

\(=\left(6+6^2\right)+\left(6^3+6^4\right)+...+\left(6^{119}+6^{120}\right)\)

\(=6\left(1+6\right)+6^3\left(1+6\right)+...+6^{119}\left(1+6\right)\)

\(=7\left(6+6^3+...+6^{119}\right)\)chia hết cho \(7\).

\(D=6+6^2+6^3+6^4+...+6^{120}\)

\(=\left(6+6^2+6^3\right)+...+\left(6^{118}+6^{119}+6^{120}\right)\)

\(=6\left(1+6+6^2\right)+...+6^{118}\left(1+6+6^2\right)\)

\(=43\left(6+...+6^{118}\right)\)chia hết cho \(43\).

2 tháng 11 2021

11111111+65745

27 tháng 10 2021

Bài 1:

a: 76-6(x-1)=10

\(\Leftrightarrow x-1=11\)

hay x=12

c: \(5x+15⋮x+2\)

\(\Leftrightarrow x+2=5\)

hay x=3

27 tháng 10 2021

Bài 1:

a) 76 - 6 (x - 1) = 10

           6 (x - 1) = 76 - 10

           6 (x - 1) = 66

               x - 1 = 66 : 6

               x - 1 = 11

               x      = 11 + 1

               x = 12

b) 3 . 43 - 7 - 185

= 3 . 64 - 7 - 185

= 192 - 7 - 185

= 185 - 185

= 0

 

16 tháng 10 2021

\(a,76-6\left(x-1\right)=10\)

\(76-6x-6=10\)

\(70-6x=10\)

\(6x=60\)

\(x=10\)

\(b,3.4^x-7=185\)

\(3.4^x=192\)

\(4^x=64\)

\(4^x=4^3\)

\(\Rightarrow x=3\)

Bài 1:Tìm x,biết:

a)  76 - 6( x - 1 ) = 10

=>  6( x - 1 ) =  76 -  10

=> 6( x - 1 ) =  66

=>   x - 1  = 11

=>  x  = 12

b)3.4^x-7=185

=>  3.4^x  =  185 + 7

=>  3.4^x  = 192

=> 4^x  = 64

=>   4^x  = 4^3

=>   x  =   3

Giải:

a) \(M=21^9+21^8+21^7+...+21+1\) 

Do \(21^n\) luôn có tận cùng là 1

\(\Rightarrow M=21^9+21^8+21^7+...+21+1\) 

Tân cùng của M là:

     \(1+1+1+1+1+1+1+1+1+1=10\) tận cùng là 0

\(\Rightarrow M⋮10\) 

\(\Leftrightarrow M⋮2;5\) 

b) \(N=6+6^2+6^3+...+6^{2020}\) 

\(N=6.\left(1+6\right)+6^3.\left(1+6\right)+...+6^{2019}.\left(1+6\right)\) 

\(N=6.7+6^3.7+...+6^{2019}.7\) 

\(N=7.\left(6+6^3+...+6^{2019}\right)⋮7\) 

\(\Rightarrow N⋮7\) 

Ta thấy: \(N=6+6^2+6^3+...+6^{2020}⋮6\) 

Mà \(6⋮̸9\) 

\(\Rightarrow N⋮̸9\) 

c) \(P=4+4^2+4^3+...+4^{23}+4^{24}\) 

\(P=1.\left(4+4^2\right)+4^2.\left(4+4^2\right)+...+4^{20}.\left(4+4^2\right)+4^{22}.\left(4+4^2\right)\) 

\(P=1.20+4^2.20+...+4^{20}.20+4^{22}.20\) 

\(P=20.\left(1+4^2+...+4^{20}+4^{22}\right)⋮20\) 

\(\Rightarrow P⋮20\) 

\(P=4+4^2+4^3+...+4^{23}+4^{24}\) 

\(P=4.\left(1+4+4^2\right)+...+4^{22}.\left(1+4+4^2\right)\) 

\(P=4.21+...+4^{22}.21\) 

\(P=21.\left(4+...+4^{22}\right)⋮21\) 

\(\Rightarrow P⋮21\) 

d) \(Q=6+6^2+6^3+...+6^{99}\) 

\(Q=6.\left(1+6+6^2\right)+...+6^{97}.\left(1+6+6^2\right)\) 

\(Q=6.43+...+6^{97}.43\) 

\(Q=43.\left(6+...+6^{97}\right)⋮43\) 

\(\Rightarrow Q⋮43\) 

Chúc bạn học tốt!

18 tháng 1 2018

a, vì n^3+3n^2+2^n chia hết cho 6 nên:

n=3+3-2+2 chia hết cho 6

n= 2

b,n= 13-5 = n vậy nên:

suy ra : 5-13= n

vậy n =(-8)

k nha gagagagagaggaga

18 tháng 1 2018

thanks bạn nhìu nha

5 tháng 8 2018

a) Sử dụng định lí Fermat nhỏ: Với mọi \(n\inℕ\)\(p\ge2\)là số nguyên tố. Ta luôn có \(n^p-n⋮7\)

Dễ thấy 7 là số nguyên tố. Do đó \(n^7-n⋮7\)

Có thể sự dụng pp quy nạp toán học hay biến đổi đẳng thức rồi sử dụng pp xét từng giá trị tại 7k+n với 7>n>0

b)Ta có: \(2n^3+3n^2+n=2n^3+2n^2+n^2+n\)

\(=n^2\left(2n+1\right)+n\left(2n+1\right)\)

\(=n\left(n+1\right)\left(2n+1\right)\)

Ta thấy n(n+1) chia hết 2. Chỉ cần chứng minh thêm đằng thức trên chia hết cho 3

Đặt n=3k+1 và n=3k+2. Tự thế vài và CM

c) Tương tự: \(n^5-5n^3+4n=n^3\left(n^2-1\right)-4n\left(n^2-1\right)\)

\(=\left(n-1\right)\left(n+1\right)\left(n^3-4n\right)\)

\(=\left(n-1\right)\left(n+1\right)n\left(n^2-4\right)\)

\(=n\left(n-1\right)\left(n+1\right)\left(n-2\right)\left(n+2\right)\)

Sắp xếp lại cho trật tự: \(\left(n-2\right)\left(n-1\right)n\left(n+1\right)\left(n+2\right)\)

Dễ thấy đẳng thức trên chia hết cho 5

Mà ta có: \(n\left(n+1\right)\left(n+2\right)⋮3\)

Và \(\left(n-1\right)n\left(n+1\right)\left(n+2\right)⋮4\)

Và tích của hai số bất kì cũng chia hết cho 2

Vậy đẳng thức trên chia hết cho 3.4.2.5=120

Cậu cuối bn chứng minh cách tương tự. :)

Mik cảm ơn bn nhìu nha!!!!^-^!!!

28 tháng 12 2015

vì 20 chia hết cho 12 , 36 chia hết cho 12 nên 120a+36b chia hết cho 12

13 tháng 7 2015

a,=7^4(7^2+7-1)

=7^4.55 vậy nó chia hết cho 55

b,16^5=2^20

2^15(2^5+1)

2^15.33 chia hết cho 33

các câu c,d cũng tương tự

19 tháng 7 2016

deu chia het ca

Bài 8:

a) Ta có: \(2^9-1=\left(2^3-1\right)\cdot\left(2^6+2^3+1\right)\)

\(=7\cdot\left(64+8+1\right)=7\cdot73⋮73\)(đpcm)

b) Ta có: \(5^6-10^4=5^4\cdot5^2-5^4\cdot2^4=5^4\left(5^2-2^4\right)\)

\(=5^4\left(25-16\right)=5^4\cdot9⋮9\)(đpcm)

c) Ta có: \(\left(n+3\right)^2-\left(n-1\right)^2\)

\(=\left(n+3-n+1\right)\left(n+3+n-1\right)\)

\(=4\cdot\left(2n+2\right)=4\cdot2\cdot\left(n+1\right)=8\left(n+1\right)⋮8\)(đpcm)

d) Ta có: \(\left(n+6\right)^2-\left(n-6\right)^2\)

\(=\left(n+6-n+6\right)\left(n+6+n-6\right)\)

\(=12\cdot2n=24n⋮24\)(đpcm)

a: \(A=2\left(1+2\right)+2^3\left(1+2\right)+...+2^{2009}\left(1+2\right)\)

\(=3\left(2+2^3+...+2^{2009}\right)⋮3\)

\(A=2\left(1+2+2^2\right)+2^4\left(1+2+2^2\right)+...+2^{2008}\left(1+2+2^2\right)\)

\(=7\left(2+2^4+...+2^{2008}\right)⋮7\)

b: \(B=3\left(1+3\right)+3^3\left(1+3\right)+...+3^{2009}\left(1+3\right)\)

\(=4\left(3+3^3+...+3^{2009}\right)⋮4\)

d: \(D=7\left(1+7\right)+7^3\left(1+7\right)+...+7^{2009}\left(1+7\right)\)

\(=8\left(7+7^3+...+7^{2009}\right)⋮8\)