K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Ta có:

\(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}=\frac{1}{7}\)

\(\Rightarrow\left(a+b+c\right)\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\right)=2009.\frac{1}{7}=287\Rightarrow\frac{a+b+c}{a+b}+\frac{a+b+c}{b+c}+\frac{a+b+c}{c+a}=287\)\(\Rightarrow1+\frac{c}{a+b}+1+\frac{a}{b+c}+1+\frac{b}{c+a}=287\)

\(\Rightarrow\frac{c}{a+b}+\frac{a}{b+c}+\frac{b}{c+a}=287-3=284\)

\(\Rightarrow S=284\)

22 tháng 2 2020

Cảm ơn nha OωO........Tặng You một ✔

19 tháng 12 2017

ta có:\(\dfrac{a}{c+b}+\dfrac{b}{a+c}+\dfrac{c}{a+b}=1\)

=>\(\left[\dfrac{a}{c+b}+\dfrac{b}{a+c}+\dfrac{c}{a+b}\right].\left(a+b+c\right)=a+b+c\)

=>\(\dfrac{a^2}{c+b}+\dfrac{ab}{a+c}+\dfrac{ac}{a+b}+\dfrac{b^2}{a+c}+\dfrac{ba}{c+d}+\dfrac{bc}{a+b}+\dfrac{ca}{c+d}+\dfrac{cb}{a+c}+\dfrac{c^2}{a+b}=a+b+c\)=>\(\dfrac{a^2}{b+c}+\dfrac{b^2}{c+a}+\dfrac{c^2}{a+b}+\dfrac{b\left(a+c\right)}{a+c}+\dfrac{c\left(a+b\right)}{a+b}+\dfrac{a\left(b+c\right)}{c+b}=a+b+c\)=>\(\dfrac{a^2}{b+c}+\dfrac{b^2}{c+a}+\dfrac{c^2}{a+b}+a+b+c=a+b+c\)

=>\(\dfrac{a^2}{b+c}+\dfrac{b^2}{c+a}+\dfrac{c^2}{a+b}=0\)

chúc bạn học tốt ^ ^

AH
Akai Haruma
Giáo viên
30 tháng 4 2023

Lời giải:
\((a+b+c)(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{a+c})=\frac{a}{a+b}+\frac{a}{b+c}+\frac{a}{a+c}+\frac{b}{a+b}+\frac{b}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}+\frac{c}{b+c}+\frac{c}{a+c}\)

$\Leftrightarrow 2018.\frac{1}{2018}=\frac{a+b}{a+b}+\frac{b+c}{b+c}+\frac{c+a}{c+a}+\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}$

$\Leftrightarrow 1=1+1+1+S$

$S=1-1-1-1=-2$

14 tháng 5 2018

những câu tích phân như này giải tay ko hề dễ, nên mình dùng table mò ra a=13,b=18,c=78 => a+b+c=109 :v

14 tháng 5 2018

nếu dùng casio thì cách làm sao vậy bạn.

17 tháng 5 2017

Sửa đề:

\(S=\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}\)

\(=\left(\dfrac{a}{b+c}+1\right)+\left(\dfrac{b}{c+a}+1\right)+\left(\dfrac{c}{a+b}+1\right)-3\)

\(=\dfrac{a+b+c}{b+c}+\dfrac{a+b+c}{c+a}+\dfrac{a+b+c}{a+b}-3\)

\(=\left(a+b+c\right)\left(\dfrac{1}{b+c}+\dfrac{1}{c+a}+\dfrac{1}{a+b}\right)-3\)

\(=2001.\dfrac{1}{10}-3\)

\(=200,1-3=197,1\)

Vậy S = 197,1

17 tháng 5 2017

kcj