Cho a + b + c = 2009 và \(\dfrac{1}{a+b} + \dfrac{1}{b+c} + \dfrac{1}{c+a} = \dfrac{1}7\)
Tính \(S = \dfrac{a}{b+c} + \dfrac{b}{a+c} + \dfrac{c}{a+b}\)
Ai biết thì bảo mình nhe...............OωO
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có:\(\dfrac{a}{c+b}+\dfrac{b}{a+c}+\dfrac{c}{a+b}=1\)
=>\(\left[\dfrac{a}{c+b}+\dfrac{b}{a+c}+\dfrac{c}{a+b}\right].\left(a+b+c\right)=a+b+c\)
=>\(\dfrac{a^2}{c+b}+\dfrac{ab}{a+c}+\dfrac{ac}{a+b}+\dfrac{b^2}{a+c}+\dfrac{ba}{c+d}+\dfrac{bc}{a+b}+\dfrac{ca}{c+d}+\dfrac{cb}{a+c}+\dfrac{c^2}{a+b}=a+b+c\)=>\(\dfrac{a^2}{b+c}+\dfrac{b^2}{c+a}+\dfrac{c^2}{a+b}+\dfrac{b\left(a+c\right)}{a+c}+\dfrac{c\left(a+b\right)}{a+b}+\dfrac{a\left(b+c\right)}{c+b}=a+b+c\)=>\(\dfrac{a^2}{b+c}+\dfrac{b^2}{c+a}+\dfrac{c^2}{a+b}+a+b+c=a+b+c\)
=>\(\dfrac{a^2}{b+c}+\dfrac{b^2}{c+a}+\dfrac{c^2}{a+b}=0\)
chúc bạn học tốt ^ ^
Lời giải:
\((a+b+c)(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{a+c})=\frac{a}{a+b}+\frac{a}{b+c}+\frac{a}{a+c}+\frac{b}{a+b}+\frac{b}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}+\frac{c}{b+c}+\frac{c}{a+c}\)
$\Leftrightarrow 2018.\frac{1}{2018}=\frac{a+b}{a+b}+\frac{b+c}{b+c}+\frac{c+a}{c+a}+\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}$
$\Leftrightarrow 1=1+1+1+S$
$S=1-1-1-1=-2$
những câu tích phân như này giải tay ko hề dễ, nên mình dùng table mò ra a=13,b=18,c=78 => a+b+c=109 :v
Sửa đề:
\(S=\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}\)
\(=\left(\dfrac{a}{b+c}+1\right)+\left(\dfrac{b}{c+a}+1\right)+\left(\dfrac{c}{a+b}+1\right)-3\)
\(=\dfrac{a+b+c}{b+c}+\dfrac{a+b+c}{c+a}+\dfrac{a+b+c}{a+b}-3\)
\(=\left(a+b+c\right)\left(\dfrac{1}{b+c}+\dfrac{1}{c+a}+\dfrac{1}{a+b}\right)-3\)
\(=2001.\dfrac{1}{10}-3\)
\(=200,1-3=197,1\)
Vậy S = 197,1
Ta có:
\(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}=\frac{1}{7}\)
\(\Rightarrow\left(a+b+c\right)\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\right)=2009.\frac{1}{7}=287\Rightarrow\frac{a+b+c}{a+b}+\frac{a+b+c}{b+c}+\frac{a+b+c}{c+a}=287\)\(\Rightarrow1+\frac{c}{a+b}+1+\frac{a}{b+c}+1+\frac{b}{c+a}=287\)
\(\Rightarrow\frac{c}{a+b}+\frac{a}{b+c}+\frac{b}{c+a}=287-3=284\)
\(\Rightarrow S=284\)
Cảm ơn nha OωO........Tặng You một ✔