K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
30 tháng 4 2023

Lời giải:
\((a+b+c)(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{a+c})=\frac{a}{a+b}+\frac{a}{b+c}+\frac{a}{a+c}+\frac{b}{a+b}+\frac{b}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}+\frac{c}{b+c}+\frac{c}{a+c}\)

$\Leftrightarrow 2018.\frac{1}{2018}=\frac{a+b}{a+b}+\frac{b+c}{b+c}+\frac{c+a}{c+a}+\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}$

$\Leftrightarrow 1=1+1+1+S$

$S=1-1-1-1=-2$

23 tháng 8 2017

1. Câu hỏi của Cuber Việt ( Câu b í -.- )

2. Quy đồng mẫu số:

\(\dfrac{a}{b}=\dfrac{a.\left(b+2018\right)}{b.\left(b+2018\right)}=\dfrac{ab+2018a}{b.\left(b+2018\right)}\)

\(\dfrac{a+2018}{b+2018}=\dfrac{\left(a+2018\right).b}{\left(b+2018\right).b}=\dfrac{ab+2018b}{b.\left(b+2018\right)}\)

\(b>0\) \(\Rightarrow\) Mẫu 2 phân số ở trên dương.

So sánh \(ab+2018a\)\(ab+2018b\):

. Nếu \(a< b\Rightarrow\) Tử số phân số thứ 1 < Tử số phân số thứ 2.

\(\Rightarrow\dfrac{a}{b}< \dfrac{a+2018}{b+2018}\)

. Nếu \(a=b\) \(\Rightarrow\) Hai phân số bằng 1.

. Nếu \(a>b\Rightarrow\) Tử số phân số thứ 1 > Tử số phân số thứ 2.

\(\Rightarrow\dfrac{a}{b}< \dfrac{a+2018}{b+2018}\)

3. \(\dfrac{x}{6}-\dfrac{1}{y}=\dfrac{1}{2}\)

\(\Rightarrow\dfrac{1}{y}=\dfrac{x}{6}-\dfrac{1}{2}\)

\(\Rightarrow\dfrac{1}{y}=\dfrac{x-3}{6}\)

\(\Rightarrow y.\left(x-3\right)=6\)

Ta có: \(6=1.6=2.3=(-1).(-6)=(-2).(-3)\)

Tự lập bảng ...

Vậy ta có những cặp x,y thỏa mãn là:

\(\left(1,7\right);\left(6,2\right);\left(2,4\right);\left(3,3\right);\left(-1,-5\right);\left(-6,0\right);\left(-2,-2\right);\left(-3,-1\right)\)

23 tháng 8 2017

\(\left\{{}\begin{matrix}\dfrac{a}{b}=\dfrac{a\left(b+2018\right)}{b\left(b+2018\right)}\\\dfrac{a+2018}{b+2018}=\dfrac{b\left(a+2018\right)}{b\left(b+2018\right)}\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{a}{b}=\dfrac{ab+2018a}{b^2+2018b}\\\dfrac{a+2018}{b+2018}=\dfrac{ab+2018b}{b^2+2018b}\end{matrix}\right.\)

Cần so sánh:

\(ab+2018a\) với \(ab+2018b\)

Cần so sánh \(2018a\) với \(2018b\)

Cần so sánh \(a\) với \(b\)

\(a>b\Leftrightarrow\dfrac{a}{b}>\dfrac{a+2018}{b+2018}\)

\(a< b\Leftrightarrow\dfrac{a}{b}< \dfrac{a+2018}{b+2018}\)

\(a=b\Leftrightarrow\dfrac{a}{b}=\dfrac{a+2018}{b+2018}\)

4 tháng 11 2017

Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\Rightarrow\left\{{}\begin{matrix}a=bk\\c=dk\end{matrix}\right.\) (1)

a) Từ (1) ta có:

\(\dfrac{a}{a+b}=\dfrac{bk}{bk+b}=\dfrac{bk}{b\left(k+1\right)}=\dfrac{k}{k+1}\) (2)

\(\dfrac{c}{c+d}=\dfrac{dk}{dk+d}=\dfrac{dk}{d\left(k+1\right)}=\dfrac{k}{k+1}\) (3)

Từ (2) và (3) suy ra \(\dfrac{a}{a+b}=\dfrac{c}{c+d}\)

b) Từ (1) ta có:

\(\dfrac{a^{2018}+c^{2018}}{b^{2018}+d^{2018}}=\dfrac{b^{2018}.k^{2018}+d^{2018}.k^{2018}}{b^{2018}+d^{2018}}=\dfrac{k^{2018}\left(b^{2018}+d^{2018}\right)}{b^{2018}+d^{2018}}=k^{2018}\) (4)

\(\dfrac{\left(a+c\right)^{2018}}{\left(b+d\right)^{2018}}=\dfrac{\left(bk+dk\right)^{2018}}{\left(b+d\right)^{2018}}=\dfrac{\left[k\left(b+d\right)\right]^{2018}}{\left(b+d\right)^{2018}}=k^{2018}\) (5)

Từ (4) và (5) suy ra \(\dfrac{a^{2018}+c^{2018}}{b^{2018}+d^{2018}}=\dfrac{\left(a+c\right)^{2018}}{\left(b+d\right)^{2018}}\)

5 tháng 11 2018

a) \(\dfrac{2a+3c}{2b+3d}\) = \(\dfrac{2a-3c}{2b-3d}\)

Từ \(\dfrac{a}{b}\) = \(\dfrac{c}{d}\) = k ( k \(\in\) Q, k \(\ne\) 0 )

=> \(\left\{{}\begin{matrix}a=bk\\c=dk\end{matrix}\right.\)

VP = \(\dfrac{2a+3c}{2b+3d}\) = \(\dfrac{2.b.k+3.d.k}{2b+3d}\) = \(\dfrac{k.\left(2b+3d\right)}{2b+3d}\) = k (1)

VT = \(\dfrac{2a-3c}{2b-3d}\) = \(\dfrac{2.b.k-3.d.k}{2b-3d}\) = \(\dfrac{k.\left(2b-3d\right)}{2b-3d}\) = k (2)

Từ (1) và (2) ta có: \(\dfrac{2a+3c}{2b+3d}\) = \(\dfrac{2a-3c}{2b-3d}\)

hay: (2a+3c).(3b-3d) = (2a-3c).(2b+3d)

5 tháng 11 2018

thanks bn nhìu nha ok

10 tháng 2 2018

b) Tìm min

\(SV=\left|x-2016\right|+\left|x-2017\right|+\left|x-2018\right|\)

\(SV=\left|x-2016\right|+\left|2018-x\right|+\left|x-2017\right|\)

\(SV\ge\left|x-2016+2018-x\right|+\left|x-2017\right|=2+\left|x-2017\right|\ge2\)

Dấu "=" xảy ra khi: \(\left\{{}\begin{matrix}2016\le x\le2018\\x=2017\end{matrix}\right.\Leftrightarrow x=2017\)

3) \(\dfrac{1}{a+b}+\dfrac{1}{b+c}+\dfrac{1}{c+a}=\dfrac{1}{3}\)

\(\Rightarrow\dfrac{a+b+c}{a+b}+\dfrac{a+b+c}{b+c}+\dfrac{a+b+c}{c+a}=676\)

\(\Rightarrow1+\dfrac{c}{a+b}+1+\dfrac{a}{b+c}+1+\dfrac{b}{c+a}=676\)

\(\Rightarrow\dfrac{c}{a+b}+\dfrac{a}{b+c}+\dfrac{b}{c+a}=673\)

10 tháng 2 2018

Mong mn giúp đỡ mikyeu

Cảm ơn mn