K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

 1. Cho tứ giác ABCD ( AD không song song BC) có E,F lần lượt là trung điểm AD, BC và EF=AB+CD/2. Chứng minh rằng tứ giác ABCD là hình thang.2. Cho tứ giác ABCD có AD=BC. Đường thẳng đi qua trung điểm M và N của 2 cạnh AB và CD cắt AD và BC lần lượt tại E và F. Chứng minh góc AEM=góc MFB.3. Cho tam giác ABC (AB>AC). Trên cạnh AB lấy điểm D sao cho BD=AC. Gọi M,N lần lượt là trung điểm của AD, BC. Chứng minh góc...
Đọc tiếp

 

1. Cho tứ giác ABCD ( AD không song song BC) có E,F lần lượt là trung điểm AD, BC và EF=AB+CD/2. Chứng minh rằng tứ giác ABCD là hình thang.

2. Cho tứ giác ABCD có AD=BC. Đường thẳng đi qua trung điểm M và N của 2 cạnh AB và CD cắt AD và BC lần lượt tại E và F. Chứng minh góc AEM=góc MFB.

3. Cho tam giác ABC (AB>AC). Trên cạnh AB lấy điểm D sao cho BD=AC. Gọi M,N lần lượt là trung điểm của AD, BC. Chứng minh góc BAC = 2.BMN

4. Cho tứ giác ABCD, gọi A', B', C', D' lần lượt là trọng tâm của các tam giác BCD, ACD, ABD, ABC. Chứng minh rằng các đường thẳng AA', BB', CC', DD' đồng quy.

5. Cho tam giác ABC, G là trọng tâm. Đường thẳng d không cắt các cạnh của tam giác ABC. Gọi A', B', C', G' lần lượt là hình chiếu của A, B, C, G trên đường thẳng d. Chứng minh GG'=AA'+BB'+CC'/3

0
22 tháng 3 2017

HFa, kg

12 tháng 10 2021

 

a) Xét △ADM△ADM và △CBM△CBM ta có :

MD = MB (gt)

ˆM1=ˆM2M1^=M2^ (2 góc đối đỉnh)

AM = CM (gt)

=> △ADM=△CBM△ADM=△CBM (c.g.c)

=> AD = BC (2 cạnh tương ứng) (1)

Xét △AEN△AEN và △BCN△BCN ta có :

AN = BN (gt)

ˆN1=ˆN2N1^=N2^ (2 góc đối đỉnh)

EN = CN (gt)

=> △AEN=△BCN△AEN=△BCN (c.g.c)

=> AE = BC (2 cạnh tương ứng) (2)

Từ (1) và (2) => AD = AE

b) Ta có : △ADM=△BCM△ADM=△BCM (CMT)

=> ˆADM=ˆBCMADM^=BCM^ (2 góc tương ứng)

Mà ˆADMADM^ và ˆBCMBCM^ là 2 góc so le trong

=>AD // BC (dấu hiệu nhận biết 2 đường thẳng song song) (3)

Ta có : △AEN=△BCN△AEN=△BCN (CMT)

=> ˆAEN=ˆBCNAEN^=BCN^ (2 góc tương ứng)

=> Mà ˆAENAEN^ và ˆBCNBCN^ là 2 góc so le trong

=> AE // BC (dấu hiệu nhận biết 2 đường thẳng song song) (4)

Từ (3) và (4) => A,D,EA,D,E thẳng hàng (theo tiên đề Ơ-clit)

12 tháng 10 2021

Cảm ơn nhoa:3

 

17 tháng 1 2017

A B C M F E G

xét \(\Delta BME\)\(\Delta CMA\)có \(\hept{\begin{cases}BM=MC\left(gt\right)\\\widehat{BME}=\widehat{CMA}\\ME=MA\left(gt\right)\end{cases}}\)(đối đỉnh)

do đó tam giác BME= tam giác CME (c.g.c)

suy ra BE = AC ( 2 cạnh tương ứng )

và \(\Rightarrow\widehat{EBM}=\widehat{ACM}\)( 2 góc tương ứng )

mà 2 góc này ở vị trí so le trong suy ra BE//AC

suy ra \(\widehat{BAC}=\widehat{EBA}\)( đồng vị )

xét \(\Delta FBE\)và \(\Delta BAC\)có \(\hept{\begin{cases}FB=BA\left(gt\right)\\\widehat{FBE}=\widehat{BAC}\left(cmt\right)\\BE=AC\left(cmt\right)\end{cases}}\)

do đó \(\Delta FBE=\Delta BAC\left(c.g.c\right)\)

suy ra \(\widehat{BFE}=\widehat{ABC}\) mà 2 góc này ở vị trí đồng vị nên BC//FE (1)

chứng minh tương tự ta có \(\Delta EMC=\Delta AMB\left(c.g.c\right)\)\(\Rightarrow AB=EC\)( 2 cạnh tương ứng

và \(\widehat{BAC}=\widehat{ECG}\) chứng minh tương tự ta có \(\Delta ACB=\Delta CGE\left(c.g.c\right)\)

suy ra \(\widehat{ACB}=\widehat{CGE}\)( 2 góc tương ứng )

mà 2 góc này ở vị trí đồng vị nên BC//EG (2)

từ (1) và (2) ta cí FE//BC;EG//BC   mà theo tiên đề Ơ-clit thì qua điểm E nằm ngoài đường thẳng BC chỉ có 1 đường thẳng song song vói đường thẳng đó

nên FE trùng EG

hay F;E;G thẳng hàng

5 tháng 12 2018

hình

a) Xét tg MAB và tg MEC có :

M1 = M2 ( đối đỉnh)

BM = MC ( M là trung điểm BC)

MA = ME ( M là trung điểm AE)

=> Tg MAB = Tg MEC (cgc)

=>  góc BAM = góc MEC 

Mà 2 góc này ở vị  trí so le trong => AB // CE

b) góc BAC = 180 - B1 - C1

góc C3 = 180 - C1 - C2

Mà C2 = B1 ( suy từ câu a) 

=> góc BAC =  góc C3                (*)

_ Xét tg ABC và tg CEG có:

góc BAC = C3 (cmt)

AB = CE

AC = CG ( C là trung điểm AG)

=> Tg ABC = tg CEG (cgc)

=> góc C1 = góc CGE

Mà 2 góc này ở vị trí đồng vị => BC // EG                 (1)

_ Xét tg BME và tg CMA có:

góc M3 = góc M4 ( đối đỉnh)

MB = MC (M là trung điểm BC)

ME = AM (M là trung điểm AE)

=> Tg BME = tg CMA (cgc)

=> EB = CA                  (-)

góc B2 = C1

_  góc B3 = 180 - B1 - B2

C3 = 180 - C2 - C1

Mà B1 = C2 ( suy từ câu a)

B2 = C1 (cmt)

=> góc B3 = C3

Mà  góc C3 =  góc BAC (*) => B3 = BAC

_ Xét tg FBE và tg BAC có :

góc B3 = BAC ( CMT)

BF = AB ( B là trung điểm AF)

BỂ = ÁC (-)

=> tg FBE = BAC (cgc)

=> góc BFE = ABC 

Mà 2 góc này ở vị trí đồng vị 

=> BC // FE                                    (2)

_ Theo tiền đề ơ-clit, từ (1) và (2) => EG trùng với FE

=> BC // FG

Hay F, E, G thẳng hàng

                                                                                               -PMM-

a: Xét ΔBEC và ΔCDB có 

BE=CD

\(\widehat{EBC}=\widehat{DCB}\)

BC chung

Do đó: ΔBEC=ΔCDB

Suy ra: CE=DB

b: Xét ΔGBC có \(\widehat{GCB}=\widehat{GBC}\)

nên ΔGBC cân tại G

=>GB=GC

Ta có: GB+GD=BD

GE+GC=CE

mà BD=CE

và GB=GC

nên GD=GE

hay ΔGDE cân tại G

c: Ta có: AB=AC
nên A nằm trên đường trung trực của BC(1)

Ta có: GB=GC

nên G nằm trên đường trung trực của BC(2)

Ta có: MB=MC

nên M nằm trên đường trung trực của BC(3)

Từ (1), (2) và (3) suy ra A,G,M thẳng hàng

2 tháng 12 2021

\(a,\) Vì M là trung điểm AC và BD nên ABCD là hbh

Do đó \(AD=BC;AD\text{//}BC\left(1\right)\)

Vì N là trung điểm AB và CE nên ACBE là hbh

Do đó \(AE=BC;AE\text{//}BC\left(2\right)\)

\(\left(1\right)\left(2\right)\Rightarrow AD=AE\)

\(b,\left(1\right)\left(2\right)\Rightarrow AD\text{ trùng }AE\Rightarrow A,D,E\text{ thẳng hàng}\)

2 tháng 12 2021

 "hbh" là gì vậy bạn

2 tháng 12 2021

Tham khảo

 

a) Xét △ADM△ADM và △CBM△CBM ta có :

MD = MB (gt)

ˆM1=ˆM2M1^=M2^ (2 góc đối đỉnh)

AM = CM (gt)

=> △ADM=△CBM△ADM=△CBM (c.g.c)

=> AD = BC (2 cạnh tương ứng) (1)

Xét △AEN△AEN và △BCN△BCN ta có :

AN = BN (gt)

ˆN1=ˆN2N1^=N2^ (2 góc đối đỉnh)

EN = CN (gt)

=> △AEN=△BCN△AEN=△BCN (c.g.c)

=> AE = BC (2 cạnh tương ứng) (2)

Từ (1) và (2) => AD = AE

b) Ta có : △ADM=△BCM△ADM=△BCM (CMT)

=> ˆADM=ˆBCMADM^=BCM^ (2 góc tương ứng)

Mà ˆADMADM^ và ˆBCMBCM^ là 2 góc so le trong

=>AD // BC (dấu hiệu nhận biết 2 đường thẳng song song) (3)

Ta có : △AEN=△BCN△AEN=△BCN (CMT)

=> ˆAEN=ˆBCNAEN^=BCN^ (2 góc tương ứng)

=> Mà ˆAENAEN^ và ˆBCNBCN^ là 2 góc so le trong

=> AE // BC (dấu hiệu nhận biết 2 đường thẳng song song) (4)

Từ (3) và (4) => A,D,EA,D,E thẳng hàng (theo tiên đề Ơ-clit)