Câu 1: cho tam giác ABC cân tại A. Đường vuông góc với AB cắt đường vuông góc với AC tại C ở D. Gọi M là trung điểm của BC. CMR: a, tam giác DAB = tam giác DAC ; b, tam giác DBC cân; c, A,M,D thẳng hàng
Nhớ vẽ hình, mình đang cầm gấp, cảm ơn
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABD vuông tại B và ΔACD vuông tại C có
AD chug
AB=AC
=>ΔABD=ΔACD
b: ΔABD=ΔACD
=>DB=DC
=>D nằm trên trung trực của BC(1)
ΔABC cân tại A
mà AM là trung tuyến
nênAM là trung trực của BC(2)
Từ (1), (2) suy ra A,M,D thẳng hàng
a: Xét ΔDAB vuông tại B và ΔDAC vuông tại C có
DA chung
AB=AC
Do đó:ΔDAB=ΔDAC
b: Ta có: ΔDAB=ΔDAC
nên DB=DC
=>ΔDBC cân tại D
mà \(\widehat{BDC}=60^0\)
nên ΔDBC đều
Bài 1:
a) Xét △DAB và △DAC có:
ABD = ACD (= 90o)
AD: chung
AB = AC (△ABC cân)
=> △DAB = △DAC (ch-cgv)
b) Vì △DAB = △DAC
=> DB = DC (2 cạnh tương ứng)
=> △DBC cân
c) Xét △AMB và △AMC có:
AB = AC (△ABC cân)
AM: chung
MB = MC (M: trung điểm BC)
=> △AMB = △AMC (c.c.c)
=> MAB = MAC (2 góc tương ứng)
=> AM là phân giác BAC (1)
Vì △DAB = △DAC
=> DAB = DAC (2 góc tương ứng)
=> AD là phân giác BAC (2)
Từ (1) và (2)
=> A, M, D thẳng hàng
Bạn tự vẽ hình nhé
Bài 1.
a) Xét tam giác MAB và tam giác MAC có:
AB = AC (tam giác ABC cân tại A )
AM là cạnh chung
MB = MC (M là trung điểm của BC )
=> tam giác MAB = tam giác MAC ( c- c - c)
=> góc MAB = góc MAC ( 2 góc tương ứng ) (1)
Xét 2 tam giác vuông: tam giác DAB và tam giác DAC có:
AB = AC ( tam giác ABC cân tại A )
góc MAB = góc MAC (c/m ở 1)
=> Tam giác DAB = tam giác DAC ( CH - GN)
b) Ta có tam giác DAB = tam giác DAC ( c/m ở câu a)
=> DB = DC ( 2 cạnh tương ứng )
=> Tam giác DBC cân tại D
còn câu c chờ mình 1 chút nhé
a) Xét tam giác DAB và tam giác DAC có :
ABD = ACD ( = 900 )
AD chung
AB = AC ( gt )
=> tam giác DAB = tam giác DAC ( ch - cgv )
=> đpcm
b) Vì tam giác DAB = tam giác DAC ( chứng minh câu a )
=> BD = CD ( 2 cạnh tương ứng )
=> tam giác BDC cân tại D ( đpcm )
c) Ta có :
+) AB = AC => A thuộc đường trung trực của BC (1)
+) BM = MC => M thuộc đường trung trực của BC (2)
+) BD = CD => D thuộc đường trung trực của BC (3)
Từ (1),(2) và (3) => A, M, D thẳng hàng ( đpcm )
*Link ảnh(nếu như olm không hiện):Ảnh - by tth
a) Xét tam giác DAB và tam giác DAC có:
AB = AC (gt)
AD (cạnh chung - cũng là cạnh huyền)
\(\widehat{ABD}=\widehat{ACD}\left(=90^o\right)\) (gt)
Do vậy \(\Delta DAB=\Delta DAC\) (cạnh huyền - cạnh góc vuông)
b) \(\Delta DAB=\Delta DAC\) nên BD = CD (hai cạnh tương ứng)
Do đó \(\Delta DBC\) cân (tại D)
c) Bạn Trần Phương đã làm =))