Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔDAB vuông tại B và ΔDAC vuông tại C có
DA chung
AB=AC
Do đó:ΔDAB=ΔDAC
b: Ta có: ΔDAB=ΔDAC
nên DB=DC
=>ΔDBC cân tại D
mà \(\widehat{BDC}=60^0\)
nên ΔDBC đều
Bài 1:
a) Xét △DAB và △DAC có:
ABD = ACD (= 90o)
AD: chung
AB = AC (△ABC cân)
=> △DAB = △DAC (ch-cgv)
b) Vì △DAB = △DAC
=> DB = DC (2 cạnh tương ứng)
=> △DBC cân
c) Xét △AMB và △AMC có:
AB = AC (△ABC cân)
AM: chung
MB = MC (M: trung điểm BC)
=> △AMB = △AMC (c.c.c)
=> MAB = MAC (2 góc tương ứng)
=> AM là phân giác BAC (1)
Vì △DAB = △DAC
=> DAB = DAC (2 góc tương ứng)
=> AD là phân giác BAC (2)
Từ (1) và (2)
=> A, M, D thẳng hàng
Bạn tự vẽ hình nhé
Bài 1.
a) Xét tam giác MAB và tam giác MAC có:
AB = AC (tam giác ABC cân tại A )
AM là cạnh chung
MB = MC (M là trung điểm của BC )
=> tam giác MAB = tam giác MAC ( c- c - c)
=> góc MAB = góc MAC ( 2 góc tương ứng ) (1)
Xét 2 tam giác vuông: tam giác DAB và tam giác DAC có:
AB = AC ( tam giác ABC cân tại A )
góc MAB = góc MAC (c/m ở 1)
=> Tam giác DAB = tam giác DAC ( CH - GN)
b) Ta có tam giác DAB = tam giác DAC ( c/m ở câu a)
=> DB = DC ( 2 cạnh tương ứng )
=> Tam giác DBC cân tại D
còn câu c chờ mình 1 chút nhé
a, xét \(\Delta\)BEM và \(\Delta\)CFM có:
\(\widehat{B}\)=\(\widehat{C}\)(gt)
BM=CM(trung tuyến AM)
\(\Rightarrow\)\(\Delta\)BEM=\(\Delta\)CFM(CH-GN)
b,Ta có \(\Delta\)ABM=\(\Delta\)ACM(c.c.c)
\(\Rightarrow\)\(\widehat{BAM}\)=\(\widehat{CAM}\)
Gọi O là giao của AM và EF
xét tam giác OAE và tam giác OAF có:
AO cạnh chung
\(\widehat{OAE}\)=\(\widehat{OAF}\)(cmt)
vì AB=AC mà EB=FC nên AE=AF
\(\Rightarrow\)tam giác OAE=tam giác OAF(c.g.c)
\(\Rightarrow\)\(\widehat{AOE}\)=\(\widehat{AOF}\)mà 2 góc này ở vị trí kề bù nên\(\widehat{AOE}\)=\(\widehat{AOF}\)=90 độ(1)
\(\Rightarrow\)OE=OF suy ra O là trung điểm EF(2)
từ (1) và (2) suy ra AM là đg trung trực của EF
c, vì \(\widehat{BAM}\)=\(\widehat{CAM}\)=> AM là p/g của \(\widehat{BAC}\)(1)
ta có tam giác BAM=tam giác CAM(c.g.c)
=> AD là p/g của góc BAC(2)
từ (1) và(2) suy ra AM và AD trùng nhau nên A,M,D thẳng hàng
a, Ta có : Tam giác ABC cân tại A => Góc B=Góc C
Xét tam giác BEM vuông tại E và tam giác CFM vuông tại F
BM=CM (BM là trung tuyến)
Góc B=Góc C
=> Tam giác BEM=Tam giác CFM(ch-gn)
b,Từ a, \(\Delta\)BEM=\(\Delta CFM\)=> ME=MF (1);BE=FC
Mà AB=AC=> AE=AF(2)
Từ 1 và 2 => AM là trung trực của EF
Câu a
Xét tam giác ABD và AMD có
AB = AM từ gt
Góc BAD = MAD vì AD phân giác BAM
AD chung
=> 2 tam guacs bằng nhau
Câu b
Ta có: Góc EMD bằng CMD vì góc ABD bằng AMD
Bd = bm vì 2 tam giác ở câu a bằng nhau
Góc BDE bằng MDC đối đỉnh
=> 2 tam giác bằng nhau
a) Xét tam giác DAB và tam giác DAC có :
ABD = ACD ( = 900 )
AD chung
AB = AC ( gt )
=> tam giác DAB = tam giác DAC ( ch - cgv )
=> đpcm
b) Vì tam giác DAB = tam giác DAC ( chứng minh câu a )
=> BD = CD ( 2 cạnh tương ứng )
=> tam giác BDC cân tại D ( đpcm )
c) Ta có :
+) AB = AC => A thuộc đường trung trực của BC (1)
+) BM = MC => M thuộc đường trung trực của BC (2)
+) BD = CD => D thuộc đường trung trực của BC (3)
Từ (1),(2) và (3) => A, M, D thẳng hàng ( đpcm )
*Link ảnh(nếu như olm không hiện):Ảnh - by tth
a) Xét tam giác DAB và tam giác DAC có:
AB = AC (gt)
AD (cạnh chung - cũng là cạnh huyền)
\(\widehat{ABD}=\widehat{ACD}\left(=90^o\right)\) (gt)
Do vậy \(\Delta DAB=\Delta DAC\) (cạnh huyền - cạnh góc vuông)
b) \(\Delta DAB=\Delta DAC\) nên BD = CD (hai cạnh tương ứng)
Do đó \(\Delta DBC\) cân (tại D)
c) Bạn Trần Phương đã làm =))