K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 1 2017

\(M=\left|x-1\right|+\left|x-3\right|=\left|x-1\right|+\left|3-x\right|\)

Áp dụng bđt \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\) ta có:

\(M\ge\left|x-1+3-x\right|=\left|2\right|=2\)

Dấu " = " xảy ra khi \(x-1\ge0;3-x\ge0\)

\(\Rightarrow x\ge1;x\le3\)

\(\Rightarrow1\le x\le3\)

Vậy \(MIN_M=2\) khi \(1\le x\le3\)

26 tháng 12 2021

a: \(A=4x^2-4x+1-4=\left(2x-1\right)^2-4>=-4\forall x\)

Dấu '=' xảy ra khi x=1/2

4 tháng 9 2021

a) Do \(\left|1+2x\right|\ge0\Rightarrow\dfrac{-1}{4}\left|1+2x\right|\le0\)

\(\Rightarrow A=2,25-\dfrac{1}{4}\left|1+2x\right|\le2,25\)

\(maxA=2,25\Leftrightarrow x=-\dfrac{1}{2}\)

b) Do \(\left|2x-3\right|\ge0\Rightarrow3+\dfrac{1}{2}\left|2x-3\right|\ge3\)

\(\Rightarrow B=\dfrac{1}{3+\dfrac{1}{2}\left|2x-3\right|}\le\dfrac{1}{3}\)

\(maxB=\dfrac{1}{3}\Leftrightarrow x=\dfrac{3}{2}\)

4 tháng 9 2021

mình ghi nhầm đề bài là Tìm giá trị lớn nhất nhé

Bài 2: 

a) Ta có: \(\left|2x-5\right|\ge0\forall x\)

\(\Leftrightarrow-\left|2x-5\right|\le0\forall x\)

\(\Leftrightarrow-\left|2x-5\right|+3\le3\forall x\)

Dấu '=' xảy ra khi \(x=\dfrac{5}{2}\)

a) Ta có: \(\left|x-2\right|\ge0\forall x\)

\(\Leftrightarrow\left|x-2\right|+15\ge15\forall x\)

Dấu '=' xảy ra khi x=2

b) Ta có: \(\left|x-5\right|\ge0\forall x\)

\(\Leftrightarrow2\left|x-5\right|\ge0\forall x\)

\(\Leftrightarrow2\left|x-5\right|-4\ge-4\forall x\)

Dấu '=' xảy ra khi x=5

25 tháng 9 2016

\(A=10x^2+6xy+y^2-4x+3\)

\(A=9x^2+6xy+y^2+x^2-4x+4-1\)

\(A=\left(3x+y\right)^2+\left(x-2\right)^2-1\)

Có: \(\left(3x+y\right)^2+\left(x-2\right)^2\ge0\)

\(\Rightarrow\left(3x+y\right)^2+\left(x-2\right)^2-1\ge-1\)

Dấu = xảy ra khi: \(\left(3x+y\right)^2+\left(x-2\right)^2=0\)

\(\Rightarrow\hept{\begin{cases}\left(3x+y\right)^2=0\\\left(x-2\right)^2=0\end{cases}}\Rightarrow\hept{\begin{cases}3x+y=0\\x-2=0\end{cases}}\Rightarrow\hept{\begin{cases}3x+y=0\\x=2\end{cases}}\Rightarrow\hept{\begin{cases}6+y=0\\x=2\end{cases}}\Rightarrow\hept{\begin{cases}y=-6\\x=2\end{cases}}\)

Vậy: \(Min_A=-1\) tại \(\hept{\begin{cases}y=-6\\x=2\end{cases}}\)