Cho hai đa thức
A(x)=4x4+6x2−7x3−5x−64x4+6x2−7x3−5x−6 và B(x)=−5x2+7x3+5x+4−4x4−5x2+7x3+5x+4−4x4
a,Tính M(x)=A(x)+B(x) rồi tìm nghiệm của M(x)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: M(x)=A(x)+B(x)
=4x^4-7x^3+6x^2-5x-6-4x^4+7x^3-5x^2+5x+4
=x^2-2
b: C(x)=A(x)-B(x)
=4x^4-7x^3+6x^2-5x-6+4x^4-7x^3+5x^2-5x-4
=8x^4-14x^3+11x^2-10x-10
c: M(1)=1^2-2=-1
C(1)=8-14+11-10-10=5-20=-15
`a,`
\(M\left(x\right)=A\left(x\right)+B\left(x\right)=\left(4x^4+6x^2-7x^3-5x-6\right)+\)`(-5x^2+7x^3+5x+4-4x^4)`
`M(x)=4x^4+6x^2-7x^3-5x-6-5x^2+7x^3+5x+4-4x^4`
`=(4x^4-4x^4)+(-7x^3+7x^3)+(6x^2-5x^2)+(-5x+5x)+(-6+4)`
`=x^2-2`
`b,`
`A(x)=B(x)+C(x)`
`-> C(x)=A(x)-B(x)`
`-> C(x)=(4x^4 + 6x^2 - 7x^3 - 5x - 6)-(-5x^2+7x^3+5x+4-4x^4)`
`C(x)=4x^4 + 6x^2 - 7x^3 - 5x - 6+5x^2-7x^3-5x-4+4x^4`
`= (4x^4+4x^4)+(-7x^3-7x^3)+(6x^2+5x^2)+(-5x-5x)+(-6-4)`
`= 8x^4-14x^3+11x^2-10x-10`
`c,`
`M(1)=1^2-2=1-2=-1`
`C(1)=8*1^4-14*1^3+11*1^2-10*1-10`
`=8-14+11-10-10=-6+11-10-10=5-10-10=-5-10=-15`
Chọn B
Ta có: B(x) = 6x4 - 7x3 + 6x2- 7x3 + 4x4 + 3 - 5x + 2x
= 10x4 - 14x3 + 6x2 - 3x + 3.
Đặt \(A\left(x\right)=0\)
\(\rightarrow7x^3-5x^2-7x+3-7x^3+5x^2+17x+27=0\)
\(\Leftrightarrow10x+30=0\)
\(\Leftrightarrow10x=-30\)
\(\Leftrightarrow x=-3\)
Vậy \(x=-3\) là nghiệm của đa thức \(A\left(x\right)\)
C2: (2x - 3)3 + (6x - 17)3
= (2x - 3 + 6x - 17)\(\left[\left(2x-3\right)^2-\left(2x-3\right)\left(6x-17\right)+\left(6x-17\right)^2\right]\)
= (8x - 20)(4x2 - 12x + 9 - 12x2 + 34x + 18x - 51 + 36x2 - 204x + 289)
= (8x - 20)(4x2 - 12x2 + 36x2 - 12x + 34x + 18x - 204x + 9 - 51 + 289)
= (8x - 20)(28x2 - 164x + 247)
Câu 1:
Ta có: \(3x^3-5x-2\)
\(=3x^3+3x^2-3x^2-3x-2x-2\)
\(=\left(x+1\right)\left(3x^2-3x-2\right)\)
a: P(x)=6x^3-4x^2+4x-2
Q(x)=-5x^3-10x^2+6x+11
M(x)=x^3-14x^2+10x+9
b: \(C\left(x\right)=7x^4-4x^3-6x+9+3x^4-7x^3-5x^2-9x+12\)
=10x^4-11x^3-5x^2-15x+21
Nếu ol thì tham khảo nah nguoiemtinhthong.
1.1
2x2+5x−1=7x3−1−−−−−√2x2+5x−1=7x3−1
⇔2(x2+x+1)+3(x−1)−7(x−1)(x2+x+1)−−−−−−−−−−−−−−−√(1)⇔2(x2+x+1)+3(x−1)−7(x−1)(x2+x+1)(1)
Đặt a=x−1−−−−−√;b=x2+x+1−−−−−−−−√;a≥0;b>0a=x−1;b=x2+x+1;a≥0;b>0
pt (1) trở thành 3a2+2b2−7ab=03a2+2b2−7ab=0
a=2ba=2b v a=13ba=13b
Các bạn tự giải quyết tiếp nhé.
1.2
TXĐ D=[1;+∞)D=[1;+∞)
đặt a=x−1−−−−−√4;b=x+1−−−−−√4;a,b≥0a=x−14;b=x+14;a,b≥0
pt (2) trở thành 3a2+2b2−5ab=03a2+2b2−5ab=0
⇔a=b⇔a=b v a=23ba=23b
...
1.3
D=[3;+∞)D=[3;+∞)
Đặt a=x2+4x−5−−−−−−−−−√;b=x−3−−−−−√;a,b≥0a=x2+4x−5;b=x−3;a,b≥0
pt (3) trở thành 3a+b=11a2−19b2−−−−−−−−−√3a+b=11a2−19b2
⇔2a2−6ab−20b2=0⇔2a2−6ab−20b2=0
⇒a=5b⇒a=5b
...
1.4
ĐK
⇔2x2−2x+2=3(x−2)x(x+1)−−−−−−−−−−−−√2x2−2x+2=3(x−2)x(x+1)
⇔(x2−2x)+2(x+1)=3(x2−2x)(x+1)−−−−−−−−−−−−−√2(x2−2x)+2(x+1)=3(x2−2x)(x+1)
Đặt x2−2x−−−−−−√=ax2−2x=a; x+1−−−−−√=bx+1=b (a;b\geq0)
⇔2a2+2b2=3ab
1.5
Đặt 4x2−4x−10=t4x2−4x−10=t (t \geq 0)
⇔t=t+4x2−2x−−−−−−−−−−√t=t+4x2−2x
⇔t2−t−4x2+2x=0t2−t−4x2+2x=0
Δ=1−4(2x−4x2)=(4x−1)2Δ=1−4(2x−4x2)=(4x−1)2
⇒t=1−2xt=1−2x hoặc t=2xt=2x
1.1
2.2+5.-1=7.3-1-----v2.2+5.-1=7.3-1
2(.2+x+1)+3(x-1)
3a+b=11a2-19b2
tóm tắt
Ta có:
A(x) + B(x) = -2x3 + 9 - 6x + 7x4 - 2x2+ 5x2 + 9x - 3x4 + 7x3 - 12
= 4x4 + 5x3 + 3x2 + 3x - 3. Chọn B
(Phần a mình lấy vế phải bằng 0 nha ^^)
a,
\(\left(5x-1\right)^2-\left(5x-4\right)\left(5x+4\right)+7=0\\ \Leftrightarrow25x^2-10x+1-\left(25x^2-16\right)+7=0\\ \Leftrightarrow25x^2-10x+1-25x^2+16+7=0\\ \Leftrightarrow-10x+24=0\\ \Leftrightarrow x=2,4\)
b,
\(5x^2+4xy+4y^2+4x+1=0\left(1\right)\\ \Leftrightarrow4x^2+4x+1+x^2+4xy+4y^2=0\\ \Leftrightarrow\left(2x+1\right)^2+\left(x+2y\right)^2=0\left(1a\right)\)
Do \(VT\ge0\) với \(\forall x,y\in R\) nên:
\(\left(1a\right)\Leftrightarrow\left\{{}\begin{matrix}2x+1=0\\x+2y=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-\frac{1}{2}\\y=\frac{1}{4}\end{matrix}\right.\)
c,
\(\left(x+2\right)^3-x\left(x-1\right)\left(x+1\right)=6x^2+21\\ \Leftrightarrow x^3+6x^2+12x+8-x\left(x^2-1\right)-6x^2-21=0\\ \Leftrightarrow x^3+12x+8-x^3+x-21=0\\ \Leftrightarrow13x-13=0\\ \Leftrightarrow x=1\)
Chúc bạn học tốt nha.
\(b)5x^2 + 4xy + 4y^2 + 4x + 1 = 0\)
\(\Leftrightarrow\) \(4x^2 + 4x + 1 + x^2 + 4xy + 4y^2 = 0\)
\(\Leftrightarrow\)\((2x + 1)^2 + (x + 2y)^2 = 0\)
\(\Leftrightarrow\left\{{}\begin{matrix}2x+1=0\\x+2y=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-\frac{1}{2}\\y=\frac{1}{4}\end{matrix}\right.\)
\(c)(x+2)^3-x(x-1)(x+1)=6x^2+21\)
\(\Leftrightarrow x^3+6x^2+12x+8-x\left(x^2-1\right)=6x^2+21\\ \Leftrightarrow13x+8=21\\ \Leftrightarrow13x=21-8\\ \Leftrightarrow13x=13\\ \Leftrightarrow x=1\)