Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(Phần a mình lấy vế phải bằng 0 nha ^^)
a,
\(\left(5x-1\right)^2-\left(5x-4\right)\left(5x+4\right)+7=0\\ \Leftrightarrow25x^2-10x+1-\left(25x^2-16\right)+7=0\\ \Leftrightarrow25x^2-10x+1-25x^2+16+7=0\\ \Leftrightarrow-10x+24=0\\ \Leftrightarrow x=2,4\)
b,
\(5x^2+4xy+4y^2+4x+1=0\left(1\right)\\ \Leftrightarrow4x^2+4x+1+x^2+4xy+4y^2=0\\ \Leftrightarrow\left(2x+1\right)^2+\left(x+2y\right)^2=0\left(1a\right)\)
Do \(VT\ge0\) với \(\forall x,y\in R\) nên:
\(\left(1a\right)\Leftrightarrow\left\{{}\begin{matrix}2x+1=0\\x+2y=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-\frac{1}{2}\\y=\frac{1}{4}\end{matrix}\right.\)
c,
\(\left(x+2\right)^3-x\left(x-1\right)\left(x+1\right)=6x^2+21\\ \Leftrightarrow x^3+6x^2+12x+8-x\left(x^2-1\right)-6x^2-21=0\\ \Leftrightarrow x^3+12x+8-x^3+x-21=0\\ \Leftrightarrow13x-13=0\\ \Leftrightarrow x=1\)
Chúc bạn học tốt nha.
\(b)5x^2 + 4xy + 4y^2 + 4x + 1 = 0\)
\(\Leftrightarrow\) \(4x^2 + 4x + 1 + x^2 + 4xy + 4y^2 = 0\)
\(\Leftrightarrow\)\((2x + 1)^2 + (x + 2y)^2 = 0\)
\(\Leftrightarrow\left\{{}\begin{matrix}2x+1=0\\x+2y=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-\frac{1}{2}\\y=\frac{1}{4}\end{matrix}\right.\)
\(c)(x+2)^3-x(x-1)(x+1)=6x^2+21\)
\(\Leftrightarrow x^3+6x^2+12x+8-x\left(x^2-1\right)=6x^2+21\\ \Leftrightarrow13x+8=21\\ \Leftrightarrow13x=21-8\\ \Leftrightarrow13x=13\\ \Leftrightarrow x=1\)
a. (5x-1)2 - (5x-4) (5x-4) +7
= (5x-1)2 - (5x-4)2 + 7
=[(5x-1)+(5x-4)] [(5x-1)-(5x-4)] +7 ( đoạn này bỏ cx đc)
=(10x-5) .3+7
=30x-15+7
=30x-8
b: \(8x^2-48x+6xy-36y\)
\(=8x\left(x-6\right)+6y\left(x-6\right)\)
\(=2\left(x-6\right)\left(4x+3y\right)\)
d: \(a^2-2ab+b^2-4\)
\(=\left(a-b\right)^2-4\)
\(=\left(a-b-2\right)\left(a-b+2\right)\)
\(a,x+5x^2=0\\ \Rightarrow a,x\left(1+5x\right)=0\\ \Rightarrow\left[{}\begin{matrix}x=0\\x=-\dfrac{1}{5}\end{matrix}\right.\\ b,\left(x+3\right)^2+\left(4+x\right)\left(4-x\right)=0\\ \Rightarrow x^2+6x+9+16-x^2=0\\ \Rightarrow6x+25=0\\ \Rightarrow6x=-25\\ \Rightarrow x=-\dfrac{25}{6}\)
\(c,5x\left(x-1\right)=x-1\\ \Rightarrow c,5x\left(x-1\right)-\left(x-1\right)\\ \Rightarrow\left(x-1\right)\left(5x-1\right)=0\\ \Rightarrow\left[{}\begin{matrix}x=1\\x=\dfrac{1}{5}\end{matrix}\right.\\ d,x^2-2x-3=0\\ \Rightarrow\left(x^2-3x\right)+\left(x-3\right)=0\\ \Rightarrow x\left(x-3\right)+\left(x-3\right)=0\\ \Rightarrow\left(x+1\right)\left(x-3\right)=0\\ \Rightarrow\left[{}\begin{matrix}x=-1\\x=3\end{matrix}\right.\)
1. a) \(( 5x-1)^2 - (5x-4) ( 5x+4) = 7\)
\(\Leftrightarrow\)\(25x^2-10x+1-(25x^2-16)=7\)
\(\Leftrightarrow\)\(25x^2-10x+1-25x^2+16-7=0\)
\(\Leftrightarrow\)\(10x=10\)
\(\Rightarrow x=1\)
b) \(( 4x-1)^2 - (2x+3)^2 + 5(x+2)^2 + 3(x-2) ( x+2) = 500\)
\(\Leftrightarrow\)\(16x^2-8x+1-4x^2-12x-9+5x+10+3x^2-12=500\)
\(\Leftrightarrow\)\(15x^2-15x=510\)
\(\Leftrightarrow\)\(15(x^2-x)=510\)
\(\Leftrightarrow\)\(x^2-x=34\)
\(\Rightarrow x=-5,352349955\)
c) \((x-2)^3 - (x-2) ( x^2+2x+4 ) + 6(x-2)(x+2) = 60\)
\(\Leftrightarrow x^3-6x^2+12x-8-\left(x^3-2^3\right)+6\left(x^2-4\right)=60\)
\(\Leftrightarrow x^3-6x^2+12x-8-x^3+8+6x^2-24=60\)
\(\Leftrightarrow12x-24=60\)
\(\Leftrightarrow12x=84\)
\(\Rightarrow x=7\)