Cho \(\Delta ABC\). Vẽ ở ngoài tam giác các hình vuông ABDE, ACFH.
a) CM: EC=BH
b)\(EC\perp BH\)
c) Gọi M,N là tâm các hình vuông ABDE, ACFH. Gọi I là trung điểm BC. Tam giác MNI là tam giác gì, vì sao?
Các bạn giúp mình nhe! Cảm ơn nhiều ạ!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
* Trong ∆ EBC , ta có: M là trung điểm EB (tính chất hình vuông)
I trung điểm BC (gt)
Nên MI là đường trung bình của ΔEBC
⇒ MI = 1/2 EC và MI // EC (tính chất đường trung bình của tam giác).
Trong ∆ BCH, ta có: I trung điểm BC (gt)
N trung điểm của CH (tính chất hình vuông)
Nên NI là đường trung bình của ∆ BCH
⇒ NI = 1/2 BH và NI // BH (tính chất đường trung bình của tam giác)
Mà BH = CE (chứng minh trên)
Suy ra: MI = NI nên ∆ INM cân tại I
MI // EC (chứng minh trên)
EC ⊥ BH (chứng minh trên)
Suy ra: MI ⊥ BH. Mà NI // BH (chứng minh trên)
Suy ra: MI ⊥ NI hay ∠ (MIN) = 90 0
Vậy ∆ MIN vuông cân tại I.
a. Ta thấy \(\widehat{EAC}=\widehat{BAH}\left(=\widehat{BAC}+90^o\right)\)
Vậy nên \(\Delta EAC=\Delta BAH\left(c-g-c\right)\)
Từ đó suy ra \(\widehat{ACE}=\widehat{AHB}\)
Vì \(\widehat{AHB}+\widehat{JHF}+\widehat{F}+\widehat{FCA}=270^o\Rightarrow\widehat{ACE}+\widehat{JHF}+\widehat{F}+\widehat{FCA}=270^o\Rightarrow\widehat{HJC}=90^o\)
Vậy \(EC\perp BH.\)
b. Ta thấy \(O_1\) là trung điểm EB. Vậy thì O1I là đường trung bình của tam giác BEC hay O1I // EC. Tương tự O2I // BH.
Lại có \(EC\perp BH\) nên \(O_1I\perp O_2I.\)
Vậy tam giác O1O2I là tam giác vuông tại I.
a. Ta có: ˆBAH=ˆBAC+ˆCAH=ˆBAC+900
ˆEAC=ˆBAC+ˆBAE=ˆBAC+900
Suy ra: ˆBAH=ˆEAC
– Xét ∆ BAH và ∆ EAC:
BA = EA (vì ABDE là hình vuông)
ˆBAH=ˆEAC (chứng minh trên)
AH = AC (vì ACFH là hình vuông)
Do đó: ∆ BAH = ∆ EAC (c.g.c)
⇒ BH = EC
Gọi giao điểm của EC với AB và BH lần lượt là K và O.
ˆAEC=ˆABH (vì ∆ BAH = ∆ EAC) (1)
hay ˆAEK=ˆOBK
– Trong ∆ AEK ta có: ˆEAK=900
⇒ˆAEK+ˆAKE=900
Um... phần a và b mình làm rồi nhưng còn phần c chưa giải được ._.