Cho parabol (P): \(y=x^2\) . Tìm điểm A trên (P) sao cho tiếp tuyến với parabol tại A song song với đường thẳng y = 2x + 3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi phương trình tiếp tuyến d tại A của parabol có dạng \(y=4x+b\) (\(b\ne5\))
Pt hoành độ giao điểm d và (P):
\(x^2=4x+b\Leftrightarrow x^2-4x-b=0\) (1)
d tiếp xúc (P) \(\Leftrightarrow\) (1) có nghiệm kép
\(\Leftrightarrow\Delta'=4+b=0\Rightarrow b=-4\)
Hoành độ giao điểm: \(x=\frac{4}{2.1}=2\Rightarrow y=4\Rightarrow A\left(2;4\right)\)
đường thẳng y = ax+ b song song với đường thằng y = -x+ 5
=> a = -1 ; b khác 5
=> đường thẳng có dạng y = -x + b
gọi A là giao của đg thẳng y = -x + b và parabol
=> xA = 1 => yA = xA2 = 1
A(1; 1) thuộc đg thẳng y = -x + b => yA = - xA + b =>b = 2 (thoả mãn)
Gọi tiếp tuyến tại A có dạng \(y=ax+b\Rightarrow a=2\Rightarrow y=2x+b\)
Phương trình hoành độ giao điểm:
\(x^2=2x+b\Leftrightarrow x^2-2x-b=0\)
\(\Delta'=1+b=0\Rightarrow b=-1\Rightarrow y=2x-1\)
Khi đó hoành độ A là nghiệm \(x^2=2x-1\Leftrightarrow x=1\Rightarrow y=1\)
Vậy \(A\left(1;1\right)\)