K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 2 2019

a,M=2^0-2^1+2^2-2^3+2^4-2^5+.....+2^2012

2M=2^1-2^2+2^3-2^4+2^5-2^5+......-2^2012+2^2013

3M=2^0+2^2013

M=(2^0+2^2013)÷3

Vậy.......

b,N=3-3^2+3^3-3^4+3^5-3^6+.....+3^2011-3^2012

3N=3^2-3^3+3^4-3^5+3^6-3^7+......+3^2012-3^2013

4N=3-3^2013

N=(3-3^2013)÷4

Vậy........

K tao nhé ko lên lớp tao đánh m😈😈😈

3 tháng 2 2019

Bt dễ thế mà ko làm dc😂😂😂😂😂

14 tháng 5 2022

-Quy luật: Nhân mỗi vế của đẳng thức cho số thích hợp để tạo ra đẳng thức mới, khi cộng (hoặc trừ) mỗi vế của mỗi đẳng thức thì sẽ rút gọn bớt.

a) \(A=2-2^2+2^3-2^4+...+2^{99}-2^{100}\)

\(\Rightarrow2A=2^2-2^3+2^4-2^5+...+2^{100}-2^{101}\)

\(\Rightarrow2A+A=2^2-2^3+2^4-2^5+...+2^{100}-2^{101}+\left(2-2^2+2^3-2^4+...+2^{99}-2^{100}\right)\)

\(\Rightarrow A=-2^{101}+2\)

b,c) làm tương tự. 

d) \(D=1+\dfrac{1}{3}+\dfrac{1}{3^2}+...+\dfrac{1}{3^{100}}\)

\(\Rightarrow3D=3+1+\dfrac{1}{3}+...+\dfrac{1}{3^{99}}\)

\(\Rightarrow3D-D=3+1+\dfrac{1}{3}+...+\dfrac{1}{3^{99}}-\left(1+\dfrac{1}{3}+\dfrac{1}{3^2}+...+\dfrac{1}{3^{100}}\right)\)

\(\Rightarrow2D=3+\dfrac{1}{3^{100}}\)

\(\Rightarrow2D=\dfrac{3^{101}+1}{3^{100}}\Rightarrow D=\dfrac{3^{101}+1}{2.3^{100}}\)

e) làm tương tự nhưng đổi thành cộng.

24 tháng 6 2021

`c)root{3}{4}.root{3}{1-sqrt3}.root{6}{(sqrt3+1)^2}`

`=root{3}{4(1-sqrt3)}.root{3}{1+sqrt3}`

`=root{3}{4(1-sqrt3)(1+sqrt3)}`

`=root{3}{4(1-3)}=-2`

`d)2/(root{3}{3}-1)-4/(root{9}-root{3}{3}+1)`

`=(2(root{3}{9}+root{3}{3}+1))/(3-1)-(4(root{3}{3}+1))/(3+1)`

`=root{3}{9}+root{3}{3}+1-root{3}{3}-1`

`=root{3}{9}`

24 tháng 6 2021

`a)root{3}{8sqrt5-16}.root{3}{8sqrt5+16}`

`=root{3}{(8sqrt5-16)(8sqrt5+16)}`

`=root{3}{320-256}`

`=root{3}{64}=4`

`b)root{3}{7-5sqrt2}-root{6}{8}`

`=root{3}{1-3.sqrt{2}+3.2.1-2sqrt2}-root{6}{(2)^3}`

`=root{3}{(1-sqrt2)^3}-sqrt2`

`=1-sqrt2-sqrt2=1-2sqrt2`

 

13 tháng 7 2016

A=-2/3

B=1

Bài 1: 

a: \(2P=2^{101}-2^{100}+2^{98}-2^{97}+...+2^3-2^2\)

=>\(3P=2^{101}-2\)

hay \(P=\dfrac{2^{101}-2}{3}\)

b: \(5Q=5^{101}-5^{100}+5^{99}-5^{98}+...+5^3-5^2+5\)

=>\(6Q=5^{101}+1\)

hay \(Q=\dfrac{5^{101}+1}{6}\)

27 tháng 8 2021

`a)(2x-1)^2+(x+3)^2-5(x-7)(x+7)`

`=4x^2-4x+1+x^2+6x+9-5(x^2-49)`

`=5x^2-5x^2-4x+6x+1+9+245`

`=2x+255`

`b)(x-2)(x^2+2x+4)-(25+x^3)`

`=x^3-8-x^3-25=-33`

AH
Akai Haruma
Giáo viên
27 tháng 8 2021

Lời giải:

a. 

$(2x-1)^2+(x+3)^2-5(x-7)(x+7)$

$=4x^2-4x+1+(x^2+6x+9)-5(x^2-49)$

$=5x^2+2x+10-(5x^2-245)=2x+255$

b.

$(x-2)(x^2+2x+4)-(25+x^3)=(x^3-2^3)-(25+x^3)$

$=-8-25=-33$