tìm x bt:
(x-7)^x+1-(x-7)^x+11=0
Giải hộ nhoa😊
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{6}{x+27}=-\frac{7}{x+1}\)
\(\Rightarrow6\left(x+1\right)=-7\left(x+27\right)\)
\(6x+6=-7x+\left(-189\right)\)
\(6x+7x=-189-6\)
\(13x=195\)
\(x=195:13\)
\(x=15\)
Vậy \(x=15\)
Ta có: \(\frac{6}{x+27}=\frac{-7}{x+1}\)
\(\Leftrightarrow6\cdot\left(x+1\right)=-7\cdot\left(x+27\right)\)
\(\Leftrightarrow6x+6=-7x-189\)
\(\Leftrightarrow6x+7x=-189-6\)
\(\Leftrightarrow13x=-195\)
\(\Leftrightarrow x=-15\)
Vậy \(x=-15\)
\(\approx GOOD\)\(LUCK\approx\)
c: \(\Leftrightarrow\left[{}\begin{matrix}x=\sqrt{7}\\x=-\sqrt{7}\\x=-5\\x=5\end{matrix}\right.\)
Mk ko viết lại đề bài nhé
<=> -2-2-2-...-2=-100
<=>(-2)(\({\\{x-1} \over 4}\)+1)=-100
<=>\({\\{x-1} \over 4}\)+1=50
<=>\({\\{x-1} \over 4}\)=49
<=>x-1=196
<=>x=197
Nhớ k nha
a) \(\dfrac{x+1}{32}=\dfrac{2}{x+1}\)
\(\Leftrightarrow\dfrac{x+1}{32}=\dfrac{2}{x+1}\left(đk:x\ne1\right)\)
\(\Leftrightarrow\left(x+1\right)\left(x+1\right)=64\)
\(\Leftrightarrow\left(x+1\right)^2-64=0\)
\(\Leftrightarrow x^2+2x+1-64=0\)
\(\Leftrightarrow x^2+6x-63=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{-2+16}{2}\\x=\dfrac{-2-16}{2}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=7\\x=-9\end{matrix}\right.\left(đk:x\ne-1\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}x=7\\x=-9\end{matrix}\right.\)
Vậy \(x_1=-9;x_2=7\)
b) \(\dfrac{x+1}{5}=\dfrac{7}{x-1}\)
\(\Leftrightarrow\dfrac{x+1}{5}=\dfrac{7}{x-1}\left(đk:x\ne1\right)\)
\(\Leftrightarrow\left(x+1\right)\left(x-1\right)=35\)
\(\Leftrightarrow\left(x+1\right)\left(x-1\right)-35=0\)
\(\Leftrightarrow x^2-1-35=0\)
\(\Leftrightarrow x^2-36=0\)
\(\Leftrightarrow x^2=36\)
\(\Leftrightarrow\left[{}\begin{matrix}x=6\\x=-6\end{matrix}\right.\left(đk:x\ne1\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}x=6\\x=-6\end{matrix}\right.\)
Vậy \(x_1=-6;x_2=6\)
c) \(\left|4,5-2x\right|:1\dfrac{7}{4}=\dfrac{11}{14}\)
\(\Leftrightarrow\left|4,5-2x\right|:\dfrac{11}{4}=\dfrac{11}{4}\)
\(\Leftrightarrow\left|4,5-2x\right|\cdot\dfrac{4}{11}=\dfrac{11}{14}\)
\(\Leftrightarrow\dfrac{4}{11}\cdot\left|4,5-2x\right|=\dfrac{11}{14}\)
\(\Leftrightarrow\left|4,5-2x\right|=\dfrac{121}{56}\)
\(\Leftrightarrow\left[{}\begin{matrix}4,5-2x=\dfrac{121}{56}\\4,5-2x=-\dfrac{121}{56}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{131}{112}\\x=\dfrac{373}{112}\end{matrix}\right.\)
Vậy \(x_1=\dfrac{131}{112};x_2=\dfrac{373}{112}\)
a) \(\dfrac{x+1}{32}=\dfrac{2}{x+1}\)
\(\Rightarrow\left(x+1\right)\left(x+1\right)=32.2\)
\(\Rightarrow\left(x+1\right)^2=64\)
\(\Rightarrow\left(x+1\right)^2=8^2\)
\(\Rightarrow x+1=8\)
\(\Rightarrow x=8-1\)
\(\Rightarrow x=7\left(TM\right)\)
Vậy \(x=7\) là giá trị cần tìm
b) \(\dfrac{x+1}{5}=\dfrac{7}{x-1}\)
\(\Rightarrow\left(x+1\right)\left(x-1\right)=7.5\)
\(\Rightarrow\left[{}\begin{matrix}x+1=7\\x-1=5\end{matrix}\right.\) \(\Rightarrow x=6\left(TM\right)\)
Vậy \(x=6\) là giá trị cần tìm
c) \(\left|4,5-2x\right|:1\dfrac{7}{4}=\dfrac{11}{14}\)
\(\left|\dfrac{45}{10}-2x\right|:\dfrac{11}{4}=\dfrac{11}{4}\)
\(\left|\dfrac{9}{2}-2x\right|=\dfrac{11}{14}.\dfrac{11}{4}\)
\(\left|\dfrac{9}{2}-2x\right|=\dfrac{121}{56}\)
\(\Rightarrow\left[{}\begin{matrix}\dfrac{9}{2}-2x=\dfrac{121}{56}\\\dfrac{9}{2}-2x=\dfrac{-121}{56}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}2x=\dfrac{131}{56}\\2x=\dfrac{373}{56}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{131}{112}\\x=\dfrac{373}{112}\end{matrix}\right.\)
Vậy \(x\in\left\{\dfrac{131}{112};\dfrac{373}{112}\right\}\) là giá trị cần tìm
Bạn ơi đề bài ko có y
(x - 7)x + 1 - (x - 7)x + 11 = 0
\(\Rightarrow\) [(x - 7)x - (x - 7)x] + (11 + 1) = 0
\(\Rightarrow\) 0 + 12 = 0
\(\Rightarrow\) 12 = 0
\(\Rightarrow\) x \(\in\) {\(\phi\)}
Vậy không có giá trị x nào để (x - 7)x + 1 - (x - 7)x + 11 = 0
Chúc bạn học tốt!
\(\left(x-7\right)^x+1-\left(x-7\right)^x+11=0\)\(0\)
<=>\(\left(x-7\right)^x-\left(x-7\right)^x+12=0\)
<=> \(12=0\)=> \(v\text{ô}\)\(l\text{ý}\)
Ko có giá trị của x
Ta có : \(\left(x-7\right)^{x+1}-\left(x-7\right)^{x+11}=0\)
=> (x - 7)x + 1.[1 - (x - 7)10] = 0
=> \(\orbr{\begin{cases}\left(x-7\right)^{x+1}=0\\1-\left(x-7\right)^{10}=0\end{cases}}\Rightarrow\orbr{\begin{cases}\left(x-7\right)^{x+1}=0^{x+1}\\\left(x-7\right)^{10}=1^{10}\end{cases}\Rightarrow\orbr{\begin{cases}x-7=0\\x-7=\pm1\end{cases}}}\)
Nếu x - 7 = 0 => x = 7
Nếu x - 7 = 1 => x = 8
Nếu x - 7 = - 1 => x = 6
Vậy \(x\in\left\{6;7;8\right\}\)