K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 1 2020

\(A=\left(\frac{3x}{1-2x}-\frac{2x}{1+2x}\right):\frac{2x^2+5}{1-4x+4x^2}\)

\(A=\frac{3x+2x}{1-2x}:\frac{2x^2+5}{\left(1-2x\right)^2}\)

\(A=\frac{5x}{1-2x}\cdot\frac{\left(1-2x\right)^2}{2x^2+5}\)

\(A=\frac{5x\left(1-2x\right)\left(1-2x\right)}{\left(1-2x\right)\left(2x^2+5\right)}\)

\(A=\frac{5x\left(1-2x\right)}{2x^2+5}\)

\(A=\frac{5x-10x^2}{2x^2+5}\)

19 tháng 1 2020

\(A=\left(\frac{3x}{1-2x}-\frac{2x}{1+2x}\right):\frac{2x^2+5}{1-4x+4x^2}\)

\(A=\left(\frac{3x.\left(1+2x\right)}{\left(1-2x\right).\left(1+2x\right)}-\frac{2x.\left(1-2x\right)}{\left(1-2x\right).\left(1+2x\right)}\right):\frac{2x^2+5}{1-4x+4x^2}\)

\(A=\left(\frac{3x+6x^2}{\left(1-2x\right).\left(1+2x\right)}-\frac{2x-4x^2}{\left(1-2x\right).\left(1+2x\right)}\right):\frac{2x^2+5}{1-4x+4x^2}\)

\(A=\left(\frac{3x+6x^2}{\left(1-2x\right).\left(1+2x\right)}+\frac{-\left(2x-4x^2\right)}{\left(1-2x\right).\left(1+2x\right)}\right):\frac{2x^2+5}{1-4x+4x^2}\)

\(A=\left(\frac{3x+6x^2-2x+4x^2}{\left(1-2x\right).\left(1+2x\right)}\right):\frac{2x^2+5}{1-4x+4x^2}\)

\(A=\frac{x+10x^2}{\left(1-2x\right).\left(1+2x\right)}:\frac{2x^2+5}{1-4x+4x^2}\)

\(A=\frac{x+10x^2}{\left(1-2x\right).\left(1+2x\right)}:\frac{2x^2+5}{\left(1-2x\right)^2}\)

\(A=\frac{x+10x^2}{\left(1-2x\right).\left(1+2x\right)}.\frac{\left(1-2x\right)^2}{2x^2+5}\)

\(A=\frac{\left(x+10x^2\right).\left(1-2x\right)^2}{\left(1-2x\right).\left(1+2x\right).\left(2x^2+5\right)}\)

\(A=\frac{\left(x+10x^2\right).\left(1-2x\right)}{\left(1+2x\right).\left(2x^2+5\right)}\)

\(A=\frac{x-2x^2+10x^2-20x^3}{2x^2+5+4x^3+10x}\)

\(A=\frac{x+8x^2-20x^3}{2x^2+5+4x^3+10x}\)

Chúc bạn học tốt!

ĐKXĐ : \(x\ne\pm\frac{1}{2}\)

\(E=\left(\frac{\left(4x^2+2x\right)\left(1+4x^2\right)}{\left(1-4x^2\right)\left(1+4x^2\right)}-\frac{\left(4x^2-2x\right)\left(1-4x^2\right)}{\left(1-4x^2\right)\left(1+4x^2\right)}\right):\left(\frac{\left(1+2x\right)\left(1+2x\right)}{\left(1-2x\right)\left(1+2x\right)}-\frac{\left(1-2x\right)\left(1-2x\right)}{\left(1+2x\right)\left(1-2x\right)}\right)\)

\(E=\left(\frac{16x^4+8x^3+4x^2+2x+16x^4-8x^3-4x^2+2x}{1-16x^4}\right):\left(\frac{1+2x+x^2-1+2x-x^2}{1-4x^2}\right)\)

\(E=\frac{32x^4+4x}{1-16x^4}:\frac{4x}{1-4x^2}\)

\(E=\frac{4x\left(8x^3+1\right)}{\left(1-4x^2\right)\left(1+4x^2\right)}.\frac{1-4x^2}{4x}\)

\(E=\frac{8x^3+1}{1+4x^2}\)

Study well 

22 tháng 2 2020

E=\(\left(\frac{4x^2+2x}{1-4x^2}-\frac{4x^2-2x}{1+4x^2}\right):\left(\frac{1+2x}{1-2x}-\frac{1-2x}{1+2x}\right)\)

E=\(\left(\frac{\left(4x^2+2x\right)\left(1+4x^2\right)-\left(4x^2-2x\right)\left(1-4x^2\right)}{\left(1-4x^2\right)\left(1+4x^2\right)}\right):\)\(\left(\frac{\left(1+2x\right)^2-\left(1-2x\right)^2}{\left(1-2x\right)\left(1+2x\right)}\right)\)

E=\(\frac{4x^2+16x^4+2x+8x^3-\left(4x^2-16x^4-2x+8x^3\right)}{\left(1-4x^2\right)\left(1+4x^2\right)}:\)\(\left(\frac{\left(1+4x+4x^2\right)-\left(1-4x+4x^2\right)}{\left(1-2x\right)\left(1+2x\right)}\right)\)

E=\(\frac{4x^2+16x^4+2x+8x^3-4x^2+16x^4+2x-8x^3}{\left(1-4x^2\right)\left(1+4x^2\right)}:\)\(\left(\frac{1+4x+4x^2-1+4x-4x^2}{\left(1-2x\right)\left(1+2x\right)}\right)\)

E=\(\frac{16x^4+2x+16x^4+2x}{\left(1-4x^2\right)\left(1+4x^2\right)}:\)\(\left(\frac{8x}{\left(1-2x\right)\left(1+2x\right)}\right)\)

E=\(\frac{32x^4+8x}{\left(1-4x^2\right)\left(1+4x^2\right)}.\frac{1-4x^2}{8x}\)

E=\(\frac{8x\left(4x^3+1\right)}{\left(1-4x^2\right)\left(1+4x^2\right)}.\frac{1-4x^2}{8x}\)

E=\(\frac{4x^3+1}{1+4x^2}\)

22 tháng 2 2020

E=\(\frac{\left(4x^2+2x\right)\left(1+4x^2\right)-\left(4x^2-2x\right)\left(1-4x^2\right)}{\left(1-4x^2\right)\left(1+4x^2\right)}:\frac{\left(1+2x\right)^2-\left(1-2x\right)^2}{1-4x^2}\)

E=\(\frac{4x^2+16x^4+2x+8x^3-4x^2+16x^2+2x-8x^3}{\left(1-4x^2\right)\left(1+4x^2\right)}.\frac{1-4x^2}{1+4x+4x^2-1+4x-4x^2}\)

E=\(\frac{32x^4+4x}{8x\left(1+4x^2\right)}=\frac{8x^3+1}{2\left(1+4x^2\right)}\)

22 tháng 2 2020

Mơn~

19 tháng 3 2020

=[x(x-2)/2(x2+4)-2x2/(4+x2)(2-x)][x(x-2)(x+1)/x3]

={[x(x-2)(2-x)-4x2 ]/2(2-x)(4+x2)} .[x(x-2)(x+1)/x3 ]

=[-x(x2+4)/2(2-x)(4+x2)].[x(x-2)(x+1)/x3 ]

=-x.x(x-2)(x+1)/2(2-x)x3

=(x+1)/2x