Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(P=\frac{\left(\frac{2x-3}{4x^2-12x+5}+\frac{2x-8}{13x-2x^2-20}-\frac{3}{2x-1}\right)}{\left(\frac{21+2x-8x^2}{4x^2+4x-3}\right)}+1\)
\(=\frac{\left(\frac{2x-3}{4x^2-2x-10x+5}+\frac{-2\left(4-x\right)}{8x-2x^2+5x-20}-\frac{3}{2x-1}\right)}{\left(\frac{21-12x+14x-8x^2}{4x^2+6x-2x-3}\right)}+1\)
\(=\frac{\left(\frac{2x-3}{2x\left(2x-1\right)-5\left(2x-1\right)}+\frac{-2\left(4-x\right)}{2x\left(4-x\right)-5\left(4-x\right)}-\frac{3}{2x-1}\right)}{\left(\frac{3\left(7-4x\right)+2x\left(7-4x\right)}{2x\left(2x+3\right)-\left(2x+3\right)}\right)}+1\)
\(=\frac{\left(\frac{2x-3}{\left(2x-1\right)\left(2x-5\right)}+\frac{-2\left(4-x\right)}{\left(2x-5\right)\left(4-x\right)}-\frac{3}{2x-1}\right)}{\frac{\left(7-4x\right)\left(3+2x\right)}{\left(2x+3\right)\left(2x-1\right)}}+1\)
\(=\frac{\left(\frac{2x-3}{\left(2x-1\right)\left(2x-5\right)}+\frac{-2\left(2x-1\right)}{\left(2x-1\right)\left(2x-5\right)}-\frac{3\left(2x-5\right)}{\left(2x-1\right)\left(2x-5\right)}\right)}{\frac{7-4x}{2x-1}}+1\)
\(=\frac{2x-3-4x+2-6x+15}{\left(2x-1\right)\left(2x-5\right)}\times\frac{2x-1}{7-4x}+1\)
\(=\frac{14-8x}{2x-5}\times\frac{1}{7-4x}+1\)
\(=\frac{2\left(7-4x\right)}{2x-5}\times\frac{1}{7-4x}+\frac{2x-5}{2x-5}\)
\(=\frac{2+2x-5}{2x-5}\)
\(=\frac{2x-3}{2x-5}\)
a: \(A=\left(\dfrac{2\left(2x+1\right)}{2\left(2x+4\right)}-\dfrac{x}{3x-6}-\dfrac{2x^3}{3x^3-12x}\right):\dfrac{6x+13x^2}{24x-12x^2}\)
\(=\left(\dfrac{2x+1}{2\left(x+2\right)}-\dfrac{x}{3\left(x-2\right)}-\dfrac{2x^3}{3x\left(x^2-4\right)}\right):\dfrac{x\left(13x+6\right)}{x\left(24-12x\right)}\)
\(=\left(\dfrac{2x+1}{2\left(x+2\right)}-\dfrac{x}{3\left(x-2\right)}-\dfrac{2x^2}{3\left(x-2\right)\left(x+2\right)}\right):\dfrac{13x+6}{-12\left(x-2\right)}\)
\(=\dfrac{3\left(2x+1\right)\left(x-2\right)-2x\left(x+2\right)-4x^2}{6\left(x+2\right)\left(x-2\right)}\cdot\dfrac{-12\left(x-2\right)}{13x+6}\)
\(=\dfrac{3\left(2x^2-3x-2\right)-2x^2-4x-4x^2}{x-2}\cdot\dfrac{-2}{13x+6}\)
\(=\dfrac{6x^2-9x-6-6x^2-4x}{x-2}\cdot\dfrac{-2}{13x+6}\)
\(=\dfrac{-\left(13x+6\right)\cdot\left(-2\right)}{\left(13x+6\right)\left(x-2\right)}=\dfrac{2}{x-2}\)
b: Để A>0 thì x-2>0
hay x>2
Để A>-1 thì A+1>0
\(\Leftrightarrow\dfrac{2+x-2}{x-2}>0\)
=>x/x-2>0
=>x>2 hoặc x<0