Cho tam giác ABC cân ở A . Vẽ tia phân giác trong của góc B cắt tia phân giác ngoài của góc A cân tại I . Chứng minh
a) AI song song với BC
b)Tam giác ABC cân
giải giúp pls all
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Em tham khảo link: Câu hỏi của ★VɪᎮεr★ - Toán lớp 7 - Học toán với OnlineMath
CM: Ta có: \(\widehat{CAx}\)là góc ngoài của t/giác ABC
=> \(\widehat{CAx}=\widehat{B}+\widehat{C}=2\widehat{C}\)
=> \(\frac{1}{2}\widehat{CAx}=\widehat{A1}=\widehat{A2}=\widehat{C}\)
mà \(\widehat{A2}\)và \(\widehat{C}\)ở vị trí so le trong
=> AI // BC
b) Ta có: AI // BC(cmt) => \(\widehat{I}=\widehat{B2}\)(so le trong)
Mà \(\widehat{B1}=\widehat{B2}\)(gt)
=> \(\widehat{I}=\widehat{B1}\) => t/giác ABI cân tại A
CM: Do BE là tia p/giác của góc B => \(\widehat{B_1}=\widehat{B_2}=\widehat{\frac{B}{2}}\)
Do CD là tia p/giác của góc C => \(\widehat{C_1}=\widehat{C_2}=\widehat{\frac{C}{2}}\)
Mà \(\widehat{B}=\widehat{C}\) (vì t/giác ABC cân)
=> \(\widehat{C_1}=\widehat{B_1}\)
Xét t/giác ACD và t/giác ABE
có: \(\widehat{A}\) : chung
AC = AB (gt)
\(\widehat{C_1}=\widehat{B_1}\)
=> t/giác ACD = t/giác ABE(g.c.g)
=> AD = AE (2 cạnh t/ứng)
=> t/giác ADE cân tại A
=> \(\widehat{D_1}=\widehat{E_1}=\frac{180^0-\widehat{A}}{2}\) (1)
Ta có: t/giác ABC cân tại A
=> \(\widehat{B}=\widehat{C}=\frac{180^0-\widehat{A}}{2}\) (2)
từ (1) và (2) => \(\widehat{D_1}=\widehat{B}\)
Mà 2 góc này ở vị trí đồng vị
=> DE // BC (Đpcm)
Vẽ tia AG là tia đối của tia AC
Ta có: \(\widehat{FAB}=\widehat{ABC}\)(hai góc so le trong, AF//BC)
\(\widehat{GAF}=\widehat{ACB}\)(hai góc đồng vị, AF//BC)
mà \(\widehat{ABC}=\widehat{ACB}\)(hai góc ở đáy của ΔABC cân tại A)
nên \(\widehat{BAF}=\widehat{GAF}\)
hay Ax là tia phân giác của góc ngoài tại đỉnh A(đpcm)
a: Xét ΔABE vuông tại A và ΔIBE vuông tại I có
BE chung
\(\widehat{ABE}=\widehat{IBE}\)
Do đó:ΔABE=ΔIBE
b: Xét ΔAEM vuông tại A và ΔIEC vuông tại I có
EA=EI
\(\widehat{AEM}=\widehat{IEC}\)
Do đó;ΔAEM=ΔIEC
Suy ra: EM=EC
hay ΔEMC cân tại E
c: Xét ΔBMC có BA/AM=BI/IC
nên AI//MC
Sửa đề câu b thành: CM △ABI cân
a, Vì △ABC cân tại A => ABC = ACB
Xét △ABC có tAC là góc ngoài của tam giác tại đỉnh A
Nên: tAC = ABC + ACB
=> tAC = 2 . ABC
Vì AI là tia phân giác của tAC
=> A1 = A2 = tAC : 2 = (2 . ABC) : 2 = ABC
=> A1 = ABC
Mà 2 góc này nằm ở vị trí đồng vị
=> AI // BC (dhnb)
b, Vì BI là tia phân giác của ABC
=> B1 = B2 = ABC : 2
Vì AI // BC (cmt)
=> AIB = B2 (2 góc so le trong)
Mà B1 = B2 (cmt)
=> AIB = B1
=> △ABI cân tại A