Tìm số nhỏ nhất khi chia so đó cho 2 dư 1 chia cho 5 dư 1 chia 7 dư 3 chia hết cho 9
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Tìm số tự nhiên nhỏ nhất sao cho khi chia số đó cho 3,4,5 đều dư 1và chia cho 7 thì không dư
Gọi số đó là x
Ta có: x - 1 ∈ BC(3; 4; 5) = {0; 60; 120; 180; 240; 300; ...}
=> x ∈ {1; 61; 121; 181; 241; 301 ...}
Vì x chia hết cho 7 => x = 301
b) Tìm số tự nhiên a nhỏ nhất sao cho a chia cho 2 dư 1,chia cho 5 dư 1,chia cho 7 dư 3,chia hết cho 9
Ta có: a chia 2 dư 1
a chia 5 dư 1
a chia 7 dư 3
a chia hết cho 9
=> a chia hết cho 3; 6; 9; 10
Ta có: 2 + 1 = 3
6 + 1 = 6
7 + 3 = 10
=> a nhỏ nhất
=> a thuộc BCNN(3; 6; 9; 10)
Ta có: 3 = 3
6 = 2 . 3
9 = 3^2
10 = 2 . 5
=> BCNN(3; 6; 9; 10) = 3^2 . 2 . 5 = 90
=> a = 90
A= 4p+3 = 17m+9= 19n+13
A+25 =4p+28= 17m+34 =19n+38
nhận thấy A+25 đồng thời chia hết cho 4, 17 và 19
vậy A+25 chia hết cho 4.17.19 =1292
A chia 1292 dư (1292-25) = 1267
Gọi số cần tìm là x (x nhỏ nhất;x chia hết cho 7;x thuộc N*)
Theo đề bài ta có:
x chia số đó cho 2 thì dư 1 , chia cho 3 thì dư 2 , chia cho 4 dư 3 , chia cho 5 dư 4 , chia cho 6 dư 5
=>x+1 chia hết cho 2;3;4,5;6
=>x+1 thuộc BC(2,3,4,5,6)=B(60)={0;60;120;180;240,300;360;420;480;....)
=>x thuộc {-1;59;119;179;139;299;359;429;479;....}
Vì x nhỏ nhất và chia hết cho 7=>x=119
Vậy x=119
HT
Gọi số cần tìm là x
ta có x chia hết cho 7 và
x+1 chia hết cho 2,3,4,5,6 nên x+1 là bội của \(2^2\cdot3\cdot5=60\)
mà x lại chia hết chp 7 nên ta có
\(x=119\)
gọi số đó là x
ta có \(\hept{\begin{cases}x+1\text{ chia hết cho 2,3,4,5,6}\\x\text{ chia hết cho 7}\end{cases}}\) vậy x +1 là bội của 60 và x là bội của 7
\(\Rightarrow\hept{\begin{cases}x=60k-1\\x=7h\end{cases}\Leftrightarrow60k-1=7h\Leftrightarrow60\left(k-2\right)=7\left(h-17\right)}\)
vậy k-2 là bội của 7 , và giá trị nhỏ nhất của k là 2
Vậy giá trị nhỏ nhất của x là \(2\times60-1=119\)
Để a chia cho 5 dư 1 thì a phải có tận cùng là 6 hoặc 1.
Để a chia cho 2 dư 1 thì a phải có tận cùng là 1 số lẻ.
Suy ra a sẽ có tận cùng là 1.
Giả sử a có dạng là Ab thì chữ số tận cùng là b.
Vậy b = 1.
Ta có Ab = A1.
Để A1 chia hết cho 9 thì ( A + 1 ) phải chia hết cho 9.
Mà 1 chia cho 9 dư 1,suy ra A chia cho 9 phải chia cho 9 dư 8.
A = 8 ( loại vì 81 chia 7 không dư 3)
A = 17 ( Đúng ).
Vậy số tự nhiên a nhỏ nhất thỏa mãn yêu cầu đề bài là 171.
b.Gọi số cần tìm là a.
Ta có: a : 3 dư 1 \(\Rightarrow\) a + 2 \(⋮\) 3
a : 5 dư 3 \(\Rightarrow\) a + 2 \(⋮\) 5 và a là nhỏ nhất
a : 7 dư 5 \(\Rightarrow\) a + 2 \(⋮\) 7
\(\Rightarrow\) a + 2 \(\in\) BCNN( 3, 5, 7 ).
\(\Rightarrow\) BCNN( 3, 5, 7 ) = 3.5.7 = 105.
\(\Rightarrow\) a + 2 = 105
\(\Rightarrow\) a = 103
Bài làm thì đúng nhưng bội chung lớn nhất là sai phải là bội chung nhỏ nhất mới đúng.
Gọi STN đó là a
Ta có: a : 3 dư 1; a : 5 dư 3; a : 7 dư 5 \(\Rightarrow\)a + 2 \(⋮\)3; 5; 7
Vì đề bài cho NN \(\Rightarrow\)a + 2 = BCNN(3;5;7)
a + 2 = 105
a = 105 - 2 = 103
23750
tick nha