cho tam giác ABC cân tại A, trên tia đối của tia AB lấy điểm D, trên tia đối của tia AC lấy điểm E sao cho AD=AE
a) chứng minh DE//BC
b) chứng minh BE=CD
c) chứng minh tam giác BED bằng tam giác CDE
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Vì tam giác ABc cân nên :
góc B = góc C
Lại vì AE=Ad => tam giác AED cần
=> Góc E = góc D
Ta có:
góc E + góc D+ góc EAD = Góc B + góc C+ góc BAC(=180 độ)
mà góc EAD = góc BAC ( đói đỉnh)
=> góc E + góc D = góc B+ góc C
mặt khác :góc B = góc C , Góc E = góc D
=> Góc E= góc C mà 2 góc này ơ vị trí so le trong nên :ED// BC ( đpcm)
b )Xét tam giác EAB và tam giác DAC có :
AE= AD ( gt )
AB=AC ( cmt)
Góc EAB= góc CAD ( đói đỉnh)
=> tam giacs EAB = tam giác DAC(c.g.c)
=> EB=CD( 2 cạnh tương ứng ( đpcm)
tham khảo
a) Vì tam giác ABc cân nên :
góc B = góc C
Lại vì AE=Ad => tam giác AED cần
=> Góc E = góc D
Ta có:
góc E + góc D+ góc EAD = Góc B + góc C+ góc BAC(=180 độ)
mà góc EAD = góc BAC ( đói đỉnh)
=> góc E + góc D = góc B+ góc C
mặt khác :góc B = góc C , Góc E = góc D
=> Góc E= góc C mà 2 góc này ơ vị trí so le trong nên :ED// BC ( đpcm)
\(\text{Hình bạn tự vẽ nhoa!}\)
\(\text{a)}\Delta ABC\text{ cân tại }A:\)
\(\Rightarrow\widehat{B}=\widehat{C}\)
\(\text{Vì }AD=AE\)
\(\Rightarrow\Delta AED\text{ cân tại A}:\)
\(\Rightarrow\widehat{E}=\widehat{D}\)
\(\text{Ta có:}\widehat{B}+\widehat{C}+\widehat{BAC}=\widehat{E}+\widehat{D}+\widehat{EAD}=180^0\)
\(\text{mà }\widehat{EAD}\text{ và }\widehat{BAC}\text{(đối đỉnh)}\)
\(\Rightarrow\widehat{E}+\widehat{D}=\widehat{B}+\widehat{C}\)
\(\Rightarrow\widehat{E}=\widehat{C}\)
\(\text{mà chúng so le trong}\)
\(\Rightarrow ED=BC\)
\(\text{b)Xét }\Delta EAB\text{ và }\Delta DAC\text{ có:}\)
\(AE=AD\left(gt\right)\)
\(AB=AC\left(cmt\right)\)
\(\widehat{EAB}=\widehat{CAD}\text{(đối đỉnh)}\)
\(\Rightarrow\Delta EAB=\Delta DAC\left(c.g.c\right)\)
\(BE=CD\text{(2 cạnh tương ứng)}\)
\(\text{c)Ta có:}\Delta EAB=\Delta DAC\left(cmt\right)\)
\(\Rightarrow\widehat{AEB}=\widehat{ADC}\)
\(\text{mà }\widehat{AED}=\widehat{ADE}\)
\(\Rightarrow\widehat{AEB}+\widehat{AED}=\widehat{ADC}+\widehat{ADE}\)
\(\text{Xét }\Delta BED\text{ và }\Delta CDE\text{ có:}\)
\(BE=CD\left(cmt\right)\)
\(\widehat{BED}=\widehat{CDE}\left(cmt\right)\)
\(ED\text{ chung}\)
\(\Rightarrow\Delta BED=\Delta CDE\left(c.g.c\right)\)
\(a,\)(Sửa đề: \(\Delta ABD=\Delta EBD\))
Vì \(\begin{cases} AB=BE\\ \widehat{ABD}=\widehat{EBD}\\ BD\text{ chung} \end{cases}\) nên \(\Delta ABD=\Delta EBD(c.g.c)\)
\(\Rightarrow \widehat{BAD}=\widehat{BED}=90^0\\ \Rightarrow DE\bot BC\)
\(b,\Delta ABD=\Delta EBD(cmt)\\ \Rightarrow AD=DE\Rightarrow D\in\text{trung trực }AE\\ AB=BE\Rightarrow B\in \text{trung trực }AE\\ \Rightarrow BD\text{ là trung trực }AE\)
\(c,\begin{cases} \widehat{MAD}=\widehat{CED}=90^0\\ AD=DE\\ AM=EC \end{cases}\\\Rightarrow \Delta ADM=\Delta EDC(c.g.c)\\ \Rightarrow MC=MD\)
\(d,\Delta ADM=\Delta EDC(cmt)\\ \Rightarrow \widehat{ADM}=\widehat{EDC}\)
Mà 2 góc này ở vị trí đối đỉnh và \(A,D,C\) thẳng hàng nên \(M,D,E\) thẳng hàng
Tham khảo :
Câu hỏi của nguyen thi thom - Toán lớp 7 - Học toán với OnlineMath
Học tốt!!!
Câu hỏi của Chi Chi - Toán lớp 7 - Học toán với OnlineMath
Tham khảo tại link trên.
a) Xét \(\Delta EAB\)và \(\Delta DAC\)có:
\(AE=AD\)(gt)
\(\widehat{EAB}=\widehat{DAC}\)(đối đỉnh)
\(AB=AC\)(Do tam giác ABC cân tại A)
Suy ra \(\Delta EAB=\Delta DAC\left(c.g.c\right)\)
\(\Rightarrow BE=CD\)(hai cạnh tương ứng)
a: Xét ΔABC vuông tại A và ΔADE vuông tại A có
AB=AD
BC=DE
=>ΔABC=ΔADE
b: AE=AC
góc EAC=90 độ
=>góc ACE=góc AEC=45 độ