K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 1 2020

ĐK: \(\left\{{}\begin{matrix}x+3\ge0\\-x^2+3x+8\ge0\\7x^2+2x+13\ge0\end{matrix}\right.\) (*)

\(PT\Leftrightarrow\sqrt[4]{-7\left(-x^2+3x+8\right)+23\left(x+3\right)}=\sqrt[4]{x+3}+\sqrt[4]{-x^2+3x+8}\)

Với \(x=-3\) => pt không thỏa mãn

Với \(x>-3\),chia cả 2 vế của phương trình cho \(\sqrt[4]{x+3}\)

\(PT\Leftrightarrow\sqrt[4]{-7.\frac{-x^2+3x+8}{x+3}+23}=1+\sqrt[4]{\frac{-x^2+3x+8}{x+3}}\)

Đặt \(t=\frac{-x^2+3x+8}{x+3}\left(t\ge0\right)\)

\(PT\Leftrightarrow\sqrt[4]{-7t+23}=1+\sqrt[4]{t}\)

\(\Leftrightarrow\left\{{}\begin{matrix}0\le t\le\frac{23}{7}\\-7t+23=1+t+4\sqrt[4]{t}+6\sqrt{t}+4\sqrt[4]{t}^3\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}0\le t\le\frac{23}{7}\\4t+2\sqrt[4]{t}^3+3\sqrt{t}+2\sqrt[4]{t}-11=0\left(1\right)\end{matrix}\right.\)

Giải (1) \(\Leftrightarrow\left(\sqrt[4]{t}-1\right)\left(4\sqrt[4]{t}^3+6\sqrt{t}+9\sqrt[4]{t}+11\right)=0\)

Với \(0\le t\le\frac{23}{7}\) \(\Rightarrow t=1\)

\(t=1\Leftrightarrow\) \(-x^2+3x+8=x+3\Leftrightarrow x^2-2x-5=0\) \(\Leftrightarrow x=1\pm\sqrt{6}\)

Thử lại thấy \(x=1\pm\sqrt{6}\) thỏa mãn.

Vậy...

a: \(\left\{{}\begin{matrix}\dfrac{12}{x-3}-\dfrac{5}{y+2}=63\\\dfrac{8}{x-3}+\dfrac{15}{y+2}=-13\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{24}{x-3}-\dfrac{10}{y+2}=126\\\dfrac{24}{x-3}+\dfrac{45}{y+2}=-39\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{-55}{y+2}=165\\\dfrac{12}{x-3}-\dfrac{5}{y+2}=63\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}y+2=\dfrac{-1}{3}\\\dfrac{12}{x-3}=48\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=-\dfrac{7}{3}\\x=\dfrac{13}{4}\end{matrix}\right.\)

17 tháng 1 2017

Nhìn không đủ chán rồi không dám động vào

17 tháng 1 2017

Viết đề kiểu gì v @@

AH
Akai Haruma
Giáo viên
25 tháng 11 2018

Câu a:

ĐKXĐ: .........

Đặt \(\sqrt{x+4}=a\Rightarrow x+4=a^2\)

PT \(\sqrt{2x+8}=x+4+\sqrt{x+4}\)

\(\Leftrightarrow \sqrt{2(x+4)}=x+4+\sqrt{x+4}\)

\(\Leftrightarrow \sqrt{2}a=a^2+a\)

\(\Leftrightarrow a^2-(\sqrt{2}-1)a=0\)

\(\Leftrightarrow a[a-(\sqrt{2}-1)]=0\Rightarrow \left[\begin{matrix} a=0\\ a=\sqrt{2}-1\end{matrix}\right.\)

Nếu \(a=0\Rightarrow x+4=a^2=0\Rightarrow x=-4\) (thỏa mãn)

Nếu \(a=\sqrt{2}-1\Rightarrow x+4=a^2=(\sqrt{2}-1)^2\Rightarrow x=1-2\sqrt{2}\) (thỏa mãn)

Vậy........