Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐK: \(\left\{{}\begin{matrix}x+3\ge0\\-x^2+3x+8\ge0\\7x^2+2x+13\ge0\end{matrix}\right.\) (*)
\(PT\Leftrightarrow\sqrt[4]{-7\left(-x^2+3x+8\right)+23\left(x+3\right)}=\sqrt[4]{x+3}+\sqrt[4]{-x^2+3x+8}\)
Với \(x=-3\) => pt không thỏa mãn
Với \(x>-3\),chia cả 2 vế của phương trình cho \(\sqrt[4]{x+3}\)
\(PT\Leftrightarrow\sqrt[4]{-7.\frac{-x^2+3x+8}{x+3}+23}=1+\sqrt[4]{\frac{-x^2+3x+8}{x+3}}\)
Đặt \(t=\frac{-x^2+3x+8}{x+3}\left(t\ge0\right)\)
\(PT\Leftrightarrow\sqrt[4]{-7t+23}=1+\sqrt[4]{t}\)
\(\Leftrightarrow\left\{{}\begin{matrix}0\le t\le\frac{23}{7}\\-7t+23=1+t+4\sqrt[4]{t}+6\sqrt{t}+4\sqrt[4]{t}^3\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}0\le t\le\frac{23}{7}\\4t+2\sqrt[4]{t}^3+3\sqrt{t}+2\sqrt[4]{t}-11=0\left(1\right)\end{matrix}\right.\)
Giải (1) \(\Leftrightarrow\left(\sqrt[4]{t}-1\right)\left(4\sqrt[4]{t}^3+6\sqrt{t}+9\sqrt[4]{t}+11\right)=0\)
Với \(0\le t\le\frac{23}{7}\) \(\Rightarrow t=1\)
\(t=1\Leftrightarrow\) \(-x^2+3x+8=x+3\Leftrightarrow x^2-2x-5=0\) \(\Leftrightarrow x=1\pm\sqrt{6}\)
Thử lại thấy \(x=1\pm\sqrt{6}\) thỏa mãn.
Vậy...
2:
a: =>2x^2-4x-2=x^2-x-2
=>x^2-3x=0
=>x=0(loại) hoặc x=3
b: =>(x+1)(x+4)<0
=>-4<x<-1
d: =>x^2-2x-7=-x^2+6x-4
=>2x^2-8x-3=0
=>\(x=\dfrac{4\pm\sqrt{22}}{2}\)
1/ ĐKXĐ: $4x^2-4x-11\geq 0$
PT $\Leftrightarrow \sqrt{4x^2-4x-11}=2(4x^2-4x-11)-6$
$\Leftrightarrow a=2a^2-6$ (đặt $\sqrt{4x^2-4x-11}=a, a\geq 0$)
$\Leftrightarrow 2a^2-a-6=0$
$\Leftrightarrow (a-2)(2a+3)=0$
Vì $a\geq 0$ nên $a=2$
$\Leftrightarrow \sqrt{4x^2-4x-11}=2$
$\Leftrightarrow 4x^2-4x-11=4$
$\Leftrightarrow 4x^2-4x-15=0$
$\Leftrightarrow (2x-5)(2x+3)=0$
$\Rightarrow x=\frac{5}{2}$ hoặc $x=\frac{-3}{2}$ (tm)
2/ ĐKXĐ: $x\in\mathbb{R}$
PT $\Leftrightarrow \sqrt{3x^2+9x+8}=\frac{1}{3}(3x^2+9x+8)-\frac{14}{3}$
$\Leftrightarrow a=\frac{1}{3}a^2-\frac{14}{3}$ (đặt $\sqrt{3x^2+9x+8}=a, a\geq 0$)
$\Leftrightarrow a^2-3a-14=0$
$\Rightarrow a=\frac{3+\sqrt{65}}{2}$ (do $a\geq 0$)
$\Leftrightarrow 3x^2+9x+8=\frac{37+3\sqrt{65}}{2}$
$\Rightarrow x=\frac{1}{2}(-3\pm \sqrt{23+2\sqrt{65}})$
a, ĐK: \(x\le-1,x\ge3\)
\(pt\Leftrightarrow2\left(x^2-2x-3\right)+\sqrt{x^2-2x-3}-3=0\)
\(\Leftrightarrow\left(2\sqrt{x^2-2x-3}+3\right).\left(\sqrt{x^2-2x-3}-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x^2-2x-3}=-\dfrac{3}{2}\left(l\right)\\\sqrt{x^2-2x-3}=1\end{matrix}\right.\)
\(\Leftrightarrow x^2-2x-3=1\)
\(\Leftrightarrow x^2-2x-4=0\)
\(\Leftrightarrow x=1\pm\sqrt{5}\left(tm\right)\)
b, ĐK: \(-2\le x\le2\)
Đặt \(\sqrt{2+x}-2\sqrt{2-x}=t\Rightarrow t^2=10-3x-4\sqrt{4-x^2}\)
Khi đó phương trình tương đương:
\(3t-t^2=0\)
\(\Leftrightarrow\left[{}\begin{matrix}t=0\\t=3\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{2+x}-2\sqrt{2-x}=0\\\sqrt{2+x}-2\sqrt{2-x}=3\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}2+x=8-4x\\2+x=17-4x+12\sqrt{2-x}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{6}{5}\left(tm\right)\\5x-15=12\sqrt{2-x}\left(1\right)\end{matrix}\right.\)
Vì \(-2\le x\le2\Rightarrow5x-15< 0\Rightarrow\left(1\right)\) vô nghiệm
Vậy phương trình đã cho có nghiệm \(x=\dfrac{6}{5}\)
a/ ĐKXĐ: \(x^2+5x+2\ge0\Rightarrow x...\left(casio\right)\)
\(x^2+5x-2-3\sqrt{x^2+5x+2}=0\)
Đặt \(\sqrt{x^2+5x+2}=a\ge0\)
\(\Rightarrow a^4-4-3a=0\Rightarrow\left[{}\begin{matrix}a=-1< 0\left(l\right)\\a=4\end{matrix}\right.\)
\(\Rightarrow\sqrt{x^2+5x+2}=4\Leftrightarrow x^2+5x-14=0\Rightarrow\left[{}\begin{matrix}x=2\\x=-7\end{matrix}\right.\)
b/ \(x^2-6x+9+3x-22-\sqrt{x^2-3x+7}=0\)
\(\Leftrightarrow x^2-3x+7-\sqrt{x^2-3x+7}-20=0\)
Đặt \(\sqrt{x^2-3x+7}=a>0\)
\(a^2-a-20=0\Rightarrow\left[{}\begin{matrix}a=5\\a=-4< 0\left(l\right)\end{matrix}\right.\)
\(\Rightarrow\sqrt{x^2-3x+7}=5\Leftrightarrow x^2-3x-18=0\Rightarrow\left[{}\begin{matrix}x=-3\\x=6\end{matrix}\right.\)
c/ĐKXĐ: \(\left[{}\begin{matrix}x\ge-1\\x\le-2\end{matrix}\right.\)
\(x^2+3x+2-\sqrt{x^2+3x+2}-6=0\)
Đặt \(\sqrt{x^2+3x+2}=a\ge0\)
\(a^2-a-6=0\Rightarrow\left[{}\begin{matrix}a=-2< 0\left(l\right)\\a=3\end{matrix}\right.\)
\(\Rightarrow\sqrt{x^2+3x+2}=3\Leftrightarrow x^2+3x-7=0\Rightarrow\left[{}\begin{matrix}x=\dfrac{-3+\sqrt{37}}{2}\\x=\dfrac{-3-\sqrt{37}}{2}\end{matrix}\right.\)
a) \(3\sqrt{x^2+3x}=\left(x+5\right)\left(2-x\right)\)
\(\Leftrightarrow3\sqrt{x^2+3x}=-x^2-3x+10\)
\(\Leftrightarrow\left(x^2+3x\right)+3\sqrt{x^2+3x}-10=0\)
Đặt \(t=\sqrt{x^2+3x}\left(t\ge0\right)\left(1\right)\)
Ta có:
\(\Rightarrow t^2+3t-10=0\)
\(\Rightarrow t_1=2\left(TM\right);t_2=-5\left(KTM\right)\)
thay \(t=2\) vào (1), ta có :
\(\sqrt{x^2+3x}=2\)
\(\Leftrightarrow x^2+3x=4\Leftrightarrow x^2+3x-4=0\)
\(\Rightarrow x_1=1;x_2=-4\)
vậy phương trình có 3 nghiệm x1 = 1, x2 = -4
b) \(\sqrt{5x^2+10x+1}=7-x^2-2x\)
\(\Leftrightarrow\sqrt{5x^2+10x+1}=\left(5x^2+10x+1\right)-6x^2+12x-6\)
\(\Leftrightarrow\sqrt{5x^2+10x+1}=\left(5x^2+10x+1\right)-6\left(x-1\right)^2\)
Đặt \(t=\sqrt{5x^2+10x+1}\) (t lớn hơn hoặc bằng 0) (1)
ta có :...............
mk chỉ bt làm đến đấy thôi, hình như đây là ôn hsg toán 10 à
Câu a:
ĐKXĐ: .........
Đặt \(\sqrt{x+4}=a\Rightarrow x+4=a^2\)
PT \(\sqrt{2x+8}=x+4+\sqrt{x+4}\)
\(\Leftrightarrow \sqrt{2(x+4)}=x+4+\sqrt{x+4}\)
\(\Leftrightarrow \sqrt{2}a=a^2+a\)
\(\Leftrightarrow a^2-(\sqrt{2}-1)a=0\)
\(\Leftrightarrow a[a-(\sqrt{2}-1)]=0\Rightarrow \left[\begin{matrix} a=0\\ a=\sqrt{2}-1\end{matrix}\right.\)
Nếu \(a=0\Rightarrow x+4=a^2=0\Rightarrow x=-4\) (thỏa mãn)
Nếu \(a=\sqrt{2}-1\Rightarrow x+4=a^2=(\sqrt{2}-1)^2\Rightarrow x=1-2\sqrt{2}\) (thỏa mãn)
Vậy........