K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 5 2017

định dạng kiểu j z ? gửi lại bài đi

4 tháng 11 2017

minh chua hoc den cai nay. SORY nhe 

NV
18 tháng 6 2020

ĐKXĐ: \(x\ge0\)

\(\Leftrightarrow2x+7+2\sqrt{x^2+7x}+\sqrt{x}+\sqrt{x+7}-42=0\)

Đặt \(\sqrt{x}+\sqrt{x+7}=t>0\)

\(\Rightarrow2x+7+2\sqrt{x^2+7x}=t^2\)

Pt trở thành:

\(t^2+t-42=0\Rightarrow\left[{}\begin{matrix}t=6\\t=-7\left(l\right)\end{matrix}\right.\)

\(\Rightarrow\sqrt{x}+\sqrt{x+7}=6\)

\(\Leftrightarrow2x+7+2\sqrt{x^2+7x}=36\)

\(\Leftrightarrow2\sqrt{x^2+7x}=29-2x\) (\(x\le\frac{29}{2}\))

\(\Leftrightarrow4\left(x^2+7x\right)=\left(29-2x\right)^2\)

\(\Leftrightarrow144x-841=0\Rightarrow x=\frac{841}{144}\)

11 tháng 8 2016

Sai đề r bạn ơi !!!

18 tháng 5 2018

https://olm.vn/hoi-dap/question/595884.html

27 tháng 11 2018

ĐK \(x\ge0\)

\(\Leftrightarrow\sqrt{x}+\sqrt{x+7}+x+2\sqrt{x\left(x+7\right)}+x+7=42\)

\(\Leftrightarrow\left(\sqrt{x}+\sqrt{x+7}\right)+\left(\sqrt{x}+\sqrt{x+7}\right)^2=42\)

\(\Leftrightarrow\left(\sqrt{x}+\sqrt{x+7}\right)^2+\left(\sqrt{x}+\sqrt{x+7}\right)-42=0\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x}+\sqrt{x+7}=6\\\sqrt{x}+\sqrt{x+7}=-7\left(vn\right)\end{matrix}\right.\)

\(\Leftrightarrow\left(\sqrt{x}+\sqrt{x+7}\right)^2=36\)

\(\Leftrightarrow2x+7+2\sqrt{x\left(x+7\right)}=36\)

\(\Leftrightarrow2\sqrt{x^2+7x}=29-2x\)

bình phương 2 vế

\(\Leftrightarrow4\left(x^2+7x\right)=4x^2-116x+841\)

\(\Leftrightarrow4x^2+28x=4x^2-116x+841\)

\(\Leftrightarrow144x=841\Leftrightarrow x=\dfrac{841}{144}\)