Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐK \(x\ge0\)
\(\Leftrightarrow\sqrt{x}+\sqrt{x+7}+x+2\sqrt{x\left(x+7\right)}+x+7=42\)
\(\Leftrightarrow\left(\sqrt{x}+\sqrt{x+7}\right)+\left(\sqrt{x}+\sqrt{x+7}\right)^2=42\)
\(\Leftrightarrow\left(\sqrt{x}+\sqrt{x+7}\right)^2+\left(\sqrt{x}+\sqrt{x+7}\right)-42=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x}+\sqrt{x+7}=6\\\sqrt{x}+\sqrt{x+7}=-7\left(vn\right)\end{matrix}\right.\)
\(\Leftrightarrow\left(\sqrt{x}+\sqrt{x+7}\right)^2=36\)
\(\Leftrightarrow2x+7+2\sqrt{x\left(x+7\right)}=36\)
\(\Leftrightarrow2\sqrt{x^2+7x}=29-2x\)
bình phương 2 vế
\(\Leftrightarrow4\left(x^2+7x\right)=4x^2-116x+841\)
\(\Leftrightarrow4x^2+28x=4x^2-116x+841\)
\(\Leftrightarrow144x=841\Leftrightarrow x=\dfrac{841}{144}\)
\(\Leftrightarrow\frac{7x+4}{\sqrt{2\left(x-1\right)\left(x+1\right)}}+\frac{2\sqrt{2x+1}}{\sqrt{2\left(x+1\right)}}=3+\frac{3\sqrt{2x+1}}{\sqrt{x-1}}\)
\(\Leftrightarrow7x+4+2\sqrt{\left(2x+1\right)\left(x-1\right)}=3\sqrt{2\left(x-1\right)\left(x+1\right)}+3\sqrt{2\left(2x+1\right)\left(x+1\right)}\)
\(\Leftrightarrow\left(7x+4+\sqrt{8x^2-4x-4}\right)^2=\left(\sqrt{18x^2-18}+\sqrt{36^2+54x+18}\right)^2\)
\(\Leftrightarrow\left(7x+4\right)^2+8x^2-4x-4+2\left(7x+4\right)\sqrt{8x^2-4x-4}\)\(=18x^2-18+36x^2+54x+18+2\sqrt{\left(18x^2-18\right)\left(36x^2+54x+18\right)}\)
\(\Leftrightarrow3x^2-2x+12+4\left(7x+4\right)\sqrt{\left(x-1\right)\left(2x+1\right)}=36\left(x+1\right)\sqrt{\left(x-1\right)\left(2x+1\right)}\)
\(\Leftrightarrow3x^2-2x+12=4\left(2x+5\right)\sqrt{\left(x-1\right)\left(2x+1\right)}\)
\(\Leftrightarrow\left(3x^2-2x+12\right)^2=16\left(2x+5\right)^2\left(x-1\right)\left(2x+1\right)\)
\(\Leftrightarrow119x^4+588x^3+1940x^2-672x-544=0\left(1\right)\)
Ta thấy x>1 => Vế trái (1) \(>119.1^4+588.1^3+1940.1^2-672.1-544=1431>0\)
=> pt vô nghiệm.