Cho tam giác ABC. Lấy I là trung điểm của AC, điểm J thuộc cạnh BC sao cho: BC = 3BJ; BI cắt AJ tại điểm O. Đường thẳng qua I song song với AJ cắt BC tại N.
a) Chứng minh N là trung điểm của CJ
b) Chứng minh O là trung điểm của BI
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Những câu hỏi liên quan
22 tháng 10 2021
Bài 1:
Gọi M là trung điểm của AD
\(BM=\sqrt{AB^2+AM^2}=\sqrt{4a^2+\dfrac{1}{4}a^2}=\dfrac{\sqrt{17}}{2}a\)
\(\left|\overrightarrow{AB}+\overrightarrow{DB}\right|=2\cdot BM=\sqrt{17}a\)
26 tháng 2 2023
a: Xét ΔABC có AH/AB=AK/AC
nên HK//BC
b: Xet ΔABC có HK//BC
nên AH/AB=HK/BC
=>HK/18=6/9=2/3
=>HK=12(cm)
c: Xét ΔABM có HI//BM
nên HI/BM=AI/AM
Xét ΔAMC có IK//MC
nên IK/MC=AI/AM
=>HI/BM=IK/MC
mà BM=CM
nên HI=IK
=>I là trung điểm của HK
a, Vì I là trung điểm AC và IN//AJ nên N là trung điểm CJ
b, Vì N là trung điểm CJ nên \(CN=NJ=BJ\left(=\dfrac{1}{3}BC\right)\)
Do đó J là trung điểm BN
Mà JO//IN (AJ//IN) nên O là trung điểm BI
chưa chi tiết chỗ nào bạn phải nói ra chứ?