Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Vì I là trung điểm AC và IN//AJ nên N là trung điểm CJ
b, Vì N là trung điểm CJ nên \(CN=NJ=BJ\left(=\dfrac{1}{3}BC\right)\)
Do đó J là trung điểm BN
Mà JO//IN (AJ//IN) nên O là trung điểm BI
Câu 3:
Xét ΔMDC có AB//CD
nên MA/MD=MB/MC(1)
Xét ΔMDK có AI//DK
nên AI/DK=MA/MD(2)
Xét ΔMKC có IB//KC
nên IB/KC=MB/MC(3)
Từ (1), (2) và (3) suy ra AI/DK=IB/KC=MI/MK
Vì AI//KC nên AI/KC=NI/NK=NA/NC
Vì IB//DK nên IB/DK=NI/NK
=>AI/KC=IB/DK
mà AI/DK=IB/KC
nên \(\dfrac{AI}{KC}\cdot\dfrac{AI}{DK}=\dfrac{IB}{DK}\cdot\dfrac{IB}{DC}\)
=>AI=IB
=>I là trung điểm của AB
AI/DK=BI/KC
mà AI=BI
nên DK=KC
hay K là trung điểm của CD
a) Ta có:
\(IN//AC\left(gt\right)\)
\(AC\perp AB\left(\widehat{A}=90^o\right)\)
\(\Rightarrow IN\perp AB\)\(hay\)\(\widehat{ANI}=90^o\)
\(Cmtt:IM//AB\left(gt\right)\)
\(AB\perp AC\left(\widehat{A}=90^o\right)\)
\(\Rightarrow IN\perp AC\)\(hay\)\(\widehat{AMI}=90^o\)
Xét tứ giác AMIN có:
\(\widehat{A}=\widehat{ANI}=\widehat{AMI}=90^o\)
Do đó tứ giác AMIN là hình chữ nhật