K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 12 2019

\(a ) \) \(Ta\) \(có :\) \(5^5 -5^4+5^3\)

\(= 5^3 . ( 5^2 - 5 + 1)\)

\(= 5^3 . 21\)\(⋮\)\(7\)

\(Vậy :\) \(5^5 - 5^4 + 5^3 \) \(⋮\)\(7\)

\(b )\) \(Ta\) \(có : \) \(16^5 + 2\)\(15\)

\(= ( 2^4 )^5 .2\)\(15\)

\(= 2\)\(20\) \(.2\)\(15\)

\(= 2\)\(15\) \(. ( 2 ^5 + 1 )\)

\(= 2\)\(15\) \(.33\)\(⋮\)\(33\)

\(Vậy : \) \(16^ 5 + 2 \)\(15\) \(⋮\)\(33\)

20 tháng 1 2018

a, gọi 3 STN liên tiếp là a, a+1, a+2

\(\Rightarrow\)tích 3 STN liên tiếp 

       = a.(a+1).(a+2)

       =3a+3 chia hết cho 3

Vậy tích 3 STN liên tiếp chia hết cho 3

19 tháng 2 2022

a) \(7^6+7^5-7^4=7^4\left(7^2+7-1\right)=7^4\left(49+7-1\right)=7^4.55⋮55\)

b) \(16^5+2^{15}=\left(2^4\right)^5+2^{15}=2^{20}+2^{15}=2^{15}\left(2^5+1\right)=2^{15}\left(32+1\right)=2^{15}.33⋮33\)

c) \(81^7-27^9-9^{13}=\left(3^4\right)^7-\left(3^3\right)^9-\left(3^2\right)^{13}=3^{28}-3^{27}-3^{26}=3^{26}\left(3^2-3-1\right)=3^{26}.5=3^{22}.3^4.5=3^{22}.405⋮405\)

a: \(=7^4\left(7^2+7-1\right)=7^4\cdot55⋮55\)

b: \(=2^{20}+2^{15}=2^{15}\left(2^5+1\right)=2^{15}\cdot33⋮33\)

c: \(=3^{28}-3^{27}-3^{26}=3^{26}\left(3^2-3-1\right)=3^{26}\cdot5=3^{22}\cdot405⋮405\)

16 tháng 2 2018

16 tháng 12 2018

Sơ đồ con đường

Lời giải chi tiết

 

   B = 16 5 + 2 15      = 2 4 5 + 2 15      = 2 20 + 2 15      = 2 15 2 5 + 1      = 2 15 .33

Áp dụng tính chất chia hết của một tích ta có:

33 ⋮ 33 ⇒ 2 15 .33 ⋮ 33 ⇒ B ⋮ 33

23 tháng 10 2017

a, Ta có  16 5 + 2 15 = 2 4 5 + 2 15 = 2 20 + 2 15 =  2 15 2 5 + 1 = 2 15 . 33  chia hết cho 33

b, Ta có:  8 8 + 4 10 = 2 3 8 + 2 2 10 = 2 24 + 2 20 =  2 20 2 4 + 1 = 2 20 . 17  chia hết cho 17

20 tháng 10 2018

28 tháng 12 2021

\(B=3+3^2+3^3+3^4+...+3^{2009}+3^{2010}\)

\(=\left(3+3^2\right)+\left(3^3+3^4\right)+...+\left(3^{2009}+3^{2010}\right)\)

\(=3\left(1+3\right)+3^3\left(1+3\right)+...+3^{2009}\left(1+3\right)\)

\(=4.\left(3+3^3+...+3^{2009}\right)\)

⇒ \(B\) ⋮ 4

29 tháng 12 2021

b: \(C=5\left(1+5+5^2\right)+...+5^{2008}\left(1+5+5^2\right)=31\cdot\left(5+...+5^{2008}\right)⋮31\)

17 tháng 12 2021

a: \(A=\left(1+3\right)+...+3^{10}\left(1+3\right)\)

\(=4\left(1+...+3^{10}\right)⋮4\)