K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 12 2019

gái xinh

19 tháng 12 2019

\(\sqrt{x^2-6x+10}=\sqrt{\left(x-3\right)^2+1}\ge\sqrt{1}=1\)

\(\sqrt{2x^2-12x+22}=\sqrt{2\left(x^2-6x+11\right)}=\sqrt{2\left(x-3\right)^2+4}\ge\sqrt{4}=2\)

Từ đó suy ra:\(\sqrt{x^2-6x+10}+\sqrt{2x^2-12x+22}\ge1+2=3\)

Dấu "=" xảy ra \(\Leftrightarrow\left(x-3\right)^2=0\Leftrightarrow x=3\)

Thử lại với x=3 thì pt thỏa mãn

Vậy pt có nghiệm duy nhất là x=3

NV
20 tháng 9 2020

\(\Leftrightarrow\sqrt{\left(x-3\right)^2+1}=1-2\left(x-3\right)^2\)

Do \(\left(x-3\right)^2\ge0\Rightarrow\left\{{}\begin{matrix}VT=\sqrt{\left(x-3\right)^2+1}\ge1\\VP=1-\left(x-3\right)^2\le1\end{matrix}\right.\)

\(\Rightarrow VT\ge VP\)

Dấu "=" xảy ra khi và chỉ khi \(\left(x-3\right)^2=0\Leftrightarrow x=3\)

27 tháng 9 2018

Tên Trung Quốc cơ á

23 tháng 9 2019

\(\sqrt{2\left(x-3\right)^2+16}\ge4\)

\(\sqrt{4\left(x-3\right)^2+4}\ge2\)

\(\Rightarrow VT\ge6\)

mà \(-x^2+6x-3=-\left(x-3\right)^2+6\le6\)

MÀ VT=VP\(\Rightarrow x=3\)

22 tháng 9 2020

Với mọi x ta có \(x^2+3x+3=\left(x+\frac{3}{2}\right)^2+\frac{3}{4}>0;2x^2+3x+2=2\left(x+\frac{3}{4}\right)^2+\frac{7}{8}>0\)

Áp dụng bất đẳng thức cosi cho 3 số

\(\sqrt[3]{x^2+3x+3}=\sqrt[3]{\left(x^2+3x+3\right)\cdot1\cdot1}\le\frac{x^2+3x+3+1+1}{3}=\frac{x^2+3x+5}{3}\)

\(\sqrt[3]{2x^2+3x+2}=\sqrt[3]{\left(2x^2+3x+2\right)\cdot1\cdot1}\le\frac{2x^2+3x+4}{3}\)

\(\Rightarrow6x^2+12x+8\le\frac{x^2+3x+5}{3}+\frac{2x^2+3x+4}{3}=x^2+2x+3\)

\(\Rightarrow5x^2+10x+5\le0\Rightarrow5\left(x+1\right)^2\le0\Rightarrow x=-1\)

vậy phương trình có nghiệm x=-1

22 tháng 9 2020

Bài này sử dụng cách đặt ẩn phụ sẽ đơn giản và nhanh hơn

7 tháng 1 2021

a.\(2\sqrt{12x}-3\sqrt{3x}+4\sqrt{48x}=17\)

=>\(4\sqrt{3x}-3\sqrt{3x}+16\sqrt{3x}=17\)

=>\(17\sqrt{3x}=17\)

=>\(\sqrt{3x}=1\)

=>\(x=\dfrac{1}{3}\)

7 tháng 1 2021

b.Ta có:\(\sqrt{x^2-6x+9}=1\)

 

=>\(\sqrt{\left(x-3\right)^2}=1\)

=>\(\left|x-3\right|=1\)

Vậy có hai trường hợp:

TH1:\(x-3=1\)

=>\(x=4\)

TH2:\(x-3=-1\)

=>\(x=2\)