K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 12 2019

\(3\left(\sqrt{3x-2}-2\right)+6\left(\sqrt{x-1}-1\right)-7x+14+4\left(\sqrt{3x^2-5x+2}+2\right)=0\)\(\Leftrightarrow\frac{9\left(x-2\right)}{\sqrt{3x-2}+2}+\frac{6\left(x-2\right)}{\sqrt{x-1}+1}-7\left(x-2\right)+\frac{4\left(x-2\right)\left(3x+1\right)}{\sqrt{3x^2-5x+2}-2}=0\)

\(\Leftrightarrow\left(x-2\right)\left(\frac{9}{\sqrt{3x-2}+2}+\frac{6}{\sqrt{x-1}+1}-7+\frac{4\left(3x+1\right)}{\sqrt{3x^2-5x+2}-2}\right)=0\)

\(\Leftrightarrow x=2\)

Dạ phần ngoặc phía sau e chưa giải đc giúp luôn vs ạ

17 tháng 12 2019

Cách của bạn Huyền sẽ khó đánh giá, nên tớ dùng hướng khác.

ĐK: \(x\ge1\)

\(PT\Leftrightarrow3\left(\sqrt{3x-2}+2\sqrt{x-1}\right)=7x-6-4+4\sqrt{\left(3x-2\right)\left(x-1\right)}\)

Đặt \(t=\sqrt{3x-2}+2\sqrt{x-1}\left(t\ge0\right)\) \(\Rightarrow t^2=4\sqrt{\left(3x-2\right)\left(x-1\right)}+7x-6\)

\(PT\Leftrightarrow3t=t^2-4\) \(\Rightarrow\left[{}\begin{matrix}t=-1\left(l\right)\\t=4\left(tm\right)\end{matrix}\right.\)

\(t=4\Rightarrow22-7x=4\sqrt{3x^2-5x+2}\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\le\frac{22}{7}\\484-308x+49x^2=48x^2-80x+32\end{matrix}\right.\) \(\Rightarrow x=2\left(tm\right)\)

Vậy

6 tháng 1 2021

ĐK: \(x\ge1\)

Đặt \(\sqrt{3x-2}+2\sqrt{x-1}=t\left(t\ge1\right)\)

\(pt\Leftrightarrow3t=t^2-4\)

\(\Leftrightarrow t^2-3t-4=0\)

\(\Leftrightarrow\left[{}\begin{matrix}t=4\\t=-1\left(l\right)\end{matrix}\right.\)

\(t=4\Leftrightarrow\sqrt{3x-2}+2\sqrt{x-1}=4\)

\(\Leftrightarrow7x-6+4\sqrt{\left(3x-2\right)\left(x-1\right)}=16\)

\(\Leftrightarrow4\sqrt{3x^2-5x+2}=22-7x\)

\(\Leftrightarrow\left\{{}\begin{matrix}48x^2-80x+32=484+49x^2-308x\\22-7x\ge0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}452+x^2-228x=0\\x\le\dfrac{22}{7}\end{matrix}\right.\)

\(\Leftrightarrow x=2\left(tm\right)\)

27 tháng 12 2015

ai làm ơn làm phước tick cho mk lên 190 với

20 tháng 11 2017

(1)Phương trình đã cho tương đương với:
3x2−7x+3−3x2−5x−1=x2−2−x2−3x+4
⇔−2x+43x2−7x+3+3x2−5x−1=3x−6x2−2+x2−3x+4

⇔(x−2)(3x2−2+x2−3x+4+23x2−7x+3+3x2−5x−1)=0
Đến đây thì bạn có thể suy ra nghiệm của phương trình sau cùng là x=2. Kiểm tra lại điều kiện ban đầu để kết luận nghiệm của phương trình đã cho.
(2)đk:23≤x≤7

Phương trình đã cho tương đương với:

3x−183x−2+4+x−67−x−1+(x−6)(3x2+x−2)=0

⇔(x−6)(33x−2+4+17−x−1+3x2+x−2)=0

⇔x=6

vì với 23≤x≤7

thì: (33x−2+4+17−x−1+3x2+x−2)