lấy M thuộc p1 :y=x^2-4x+3 và N thuộc p2: y= (x-5)^2 sao cho đoạn MN ngắn nhất.tính MN ???? Help meeeeeeeeeee
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Phương trình tham số d1: \(\left\{{}\begin{matrix}x=1+2t\\y=3+3t\\z=2t\end{matrix}\right.\)
Phương trình tham số d2: \(\left\{{}\begin{matrix}x=5+6t'\\y=4t'\\z=5-5t'\end{matrix}\right.\)
Gọi (Q) là mặt phẳng song song (P) và cách (P) 1 khoảng bằng 2 \(\Rightarrow\) pt có dạng \(x-2y-2z-d=0\) (\(d\ne1\))
Gọi \(A\left(d;0;0\right)\) là 1 điểm thuộc (Q)
\(d\left(A;\left(P\right)\right)=2\Leftrightarrow\frac{\left|d+1\right|}{\sqrt{1+4+4}}=2\Leftrightarrow\left|d+1\right|=6\Rightarrow\left[{}\begin{matrix}d=5\\d=-7\end{matrix}\right.\)
Có 2 mp (Q) thỏa mãn: \(\left[{}\begin{matrix}x-2y-2z-5=0\\x-2y-2z+7=0\end{matrix}\right.\)
M là giao điểm (Q) và d1 nên tọa độ M là ...
N là giao điểm (Q) và d2 nên tọa độ N là ...
Đáp án A
Kẻ:
M H ⊥ A D ⇒ M H = A H = x 2 2 ⇒ H D = a − x 2 2
Tam giác HND có
H N 2 = D N 2 − 2 D N . H D . c o s 2 N D H ^
= a − x 2 2 2 + x 2 − 2 x a − x 2 2 = 5 2 x 2 − 2 2 a x + a 2
Vì:
M H ⊥ A D ⇒ M H / / A A ' ⇒ M H ⊥ A B C D ⇒ M H ⊥ H N
Tam giác MHN vuông tại H, có M N 2 = M H 2 + H N 2
= x 2 2 2 + 5 2 x 2 − 2 2 a x + a 2 = 3 x 2 − 2 2 a x + a 2 = 1 3 x − a 2 3 2 + a 2 3 ≥ a 2 3 ⇒ M N ≥ a 3 3 ⇒ M N min = a 3 3
Dấu “=” xảy ra khi
x
=
a
2
3
c)\(\left(xy^2-1\right)\left(x^2y+5\right)\)
\(=x^3y^3+5xy^2-x^2y-5\)
d)\(4\left(x-\dfrac{1}{2}\right)\left(x+\dfrac{1}{2}\right)\left(4x^2+1\right)\)
\(=4\left(x^2-\dfrac{1}{4}\right)\left(4x^2+1\right)\)
\(=4\left(4x^4+x^2-x-\dfrac{1}{4}\right)\)
\(=16x^4+4x^2-4x-1\)