B12: Cho tỷ lệ thức \(\frac{a}{b}\)= \(\frac{c}{d}\)(b, d khác 0). Chứng minh rằng:
a)\(\frac{2019a+3b}{2019a-5b}\)= \(\frac{2019c+3d}{2019c-5d}\) b) \(\frac{ab}{cd}\)= \(\frac{a^2-4b^2}{c^2-4d^2}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\Rightarrow\frac{a^2}{c^2}=\frac{b^2}{d^2}\Rightarrow\frac{2019a^2}{2019c^2}=\frac{2020b^2}{2020d^2}=\)
\(=\frac{2019a^2+2020b^2}{2019c^2+2020d^2}=\frac{2019a^2-2020b^2}{2019c^2-2020d^2}\Rightarrow\frac{2019a^2+2020b^2}{2019a^2-2020b^2}=\frac{2019c^2+2020d^2}{2019c^2-2020d^2}\)
Bạn ơi tham khảo thử cách này nhé !
Từ \(\frac{a}{b}=\frac{c}{d}\)( bài cho )
Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow\hept{\begin{cases}a=bk\\c=dk\end{cases}}\)
Khi đó :
+) \(\frac{2019a^2+2020b^2}{2019a^2-2020b^2}=\frac{2019\left(bk\right)^2+2020b^2}{2019\left(bk\right)^2-2020b^2}=\frac{b^2\left(2019k^2+2020\right)}{b^2\left(2019k^2-2020\right)}=\frac{2019k^2+2020}{2019k^2-2020}\)
+) \(\frac{2019c^2+2020d^2}{2019c^2-2020d^2}=\frac{2019\left(dk\right)^2+2020d^2}{2019\left(dk\right)^2-2020d^2}=\frac{d^2\left(2019k^2+2020\right)}{d^2\left(2019k^2-2020\right)}=\frac{2019k^2+2020}{2019k^2-2020}\)
Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow\hept{\begin{cases}a=bk\\c=dk\end{cases}}\)
\(\Rightarrow\frac{2019a^2+2020b^2}{2019a^2-2020b^2}=\frac{2019b^2k^2+2020b^2}{2019b^2k^2-2020b^2}\)
\(=\frac{2019k^2+2020}{2019k^2-2020}\)(1)
và\(\Rightarrow\frac{2019c^2+2020d^2}{2019c^2-2020d^2}=\frac{2019d^2k^2+2020d^2}{2019d^2k^2-2020d^2}\)
\(=\frac{2019k^2+2020}{2019k^2-2020}\)(2)
Từ (1) và (2) suy ra \(\frac{2019a^2+2020b^2}{2019a^2-2020b^2}\)\(=\frac{2019c^2+2020d^2}{2019c^2-2020d^2}\left(đpcm\right)\)
Ta có: \(2019a+bc=a\left(a+b+c\right)+bc=\left(a+b\right)\left(c+a\right)\ge\left(\sqrt{ab}+\sqrt{ac}\right)^2\)
\(\Rightarrow a+\sqrt{2019a+bc}\ge a+\sqrt{ab}+\sqrt{bc}=\sqrt{a}\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)\)
\(\Rightarrow\frac{a}{a+\sqrt{2019a+bc}}\le\frac{a}{\sqrt{a}\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)}=\frac{\sqrt{a}}{\sqrt{a}+\sqrt{b}+\sqrt{c}}\)
Tương tự cộng vào suy ra điều phải chứng minh
Với \(a+b+c+d=0\)
\(\Rightarrow a+b=-\left(c+d\right);b+c=-\left(d+a\right);c+d=-\left(a+b\right);d+a=-\left(b+c\right)\)
Khi đó \(M=-1-1-1-1=-4\)
Với \(a+b+c+d\ne0\)
Áp dụng dãy tỉ số bằng nhau
\(\frac{2019a+b+c+d}{a}=\frac{a+2019b+c+d}{b}=\frac{a+b+2019c+d}{c}=\frac{a+b+c+2019d}{d}\)
\(=\frac{2022\left(a+b+c+d\right)}{a+b+c+d}=2022\)
\(\Rightarrow a=b=c=d\)
\(\Rightarrow M=4\)
Áp dụng TC của dãy tỉ số bằng nhau , ta có :
\(\frac{2019a+b+c+d}{a}=\frac{a+2019b+c+d}{b}=\frac{a+b+2019c+d}{c}=\frac{a+b+c+2019d}{d}\)
\(=\frac{\left(2019a+a+a+a\right)+\left(2019b+b+b+b\right)+\left(2019c+c+c+c\right)+\left(2019d+d+d+d\right)}{a+b+c+d}\)
\(=\frac{2022\left(a+b+c+d\right)}{a+b+c+d}=2022\)
Xét a + b + c + d =0
=> ( a + b ) = - ( c + d ) ; ( b + c ) = - ( a + d ) ; ( c + d ) = - ( a + b ) ; (a + d ) = - ( b + c )
\(\Rightarrow M=\frac{-\left(c+d\right)}{c+d}+\frac{-\left(a+d\right)}{d+a}+\frac{-\left(a+b\right)}{b+a}+\frac{-\left(a+d\right)}{b+c}\)
\(M=\left(-1\right)+\left(-1\right)+\left(-1\right)+\left(-1\right)=-4\)
Xét a + b + c + d khác 0
=> a = b = c = d
=> M = 1 + 1 + 1 + 1 = 4
Vậy .....................